Contents

Declarations vi
Certificate vii
Acknowledgements ix
Abstract xi
Contents xvi
List of Figures xxii
List of Tables

Chapter 1
Multimedia Digital Rights and Protection Measures 1 - 10

1. Introduction

1.1 Copyrights and related legal protection: Terminology
 1.1.1 Digital Rights Management (DRM)
 1.1.2 Copy Protection and Copyright Protection
 1.1.3 Electronic Copyright Management System (ECMS)

1.2 Legal protection: Acts and Treaties
 1.2.1 The Digital Millennium Copyright Act (DMCA): Copyright Management Information and Watermarking
 1.2.2 WIPO Copyright Treaties

1.3 Technical Protection Techniques
 1.3.1 Steganography
 1.3.2 Cryptography
 1.3.3 Steganography versus Cryptography
 1.3.4 Steganography with Cryptography
 1.3.5 Finger Printing and Labeling
 1.3.6 Digital Watermarking
1.3.7. Steganography versus Watermarking
1.3.8. Applications of Watermarks

1.4. Digital Rights Protection through Robust Watermarking
1.4.1. Watermarking as a Solution
1.4.2. Related research studies
1.4.3. Possible Watermarks for Copyright Protection

1.5. Organization of this Thesis

Chapter 2

Data Hiding and Watermarking

2. Data embedding is multi-disciplinary
 2.1. Major sub-disciplines in Information Hiding
 2.2. Steganography and Watermarking Taxonomy
 2.2.1. History of Steganography
 2.2.2. Steganography and Watermarking
 2.2.3. History of Watermarks
 2.2.4. Origin and Development of Digital Watermarking
 2.3. Techniques of steganography
 2.4. Watermark Implementation Stages
 2.5. Watermarking for copyright protection
 2.5.1. Characteristics of Watermarking Algorithms for Copyright Protection
 2.5.2. Modern Steganographic Media
 2.5.3. Attacks on Watermarks
 2.5.4. Watermarking for Security and Protection of Copyrights
Chapter 3

Mathematical Background

3.1 Matrix representation of an image
 3.1.1. SVD of a matrix
 3.1.2. The Existence theorem of SVD
 3.1.3. SVD as a Transformation Domain for Watermarking
 3.1.4. Advantages of SVD as Watermarking Domain
 3.1.5. Disadvantages

3.2. Discrete Cosine Transform (DCT)

3.3. Discrete Wavelet Transform (DWT)

3.4. Perceptual Quality Assessment of images
 3.4.1. Image Quality Measures
 3.4.1.1. Mean Square Error (MSE)
 3.4.1.2. Peak Signal to Noise Ratio
 3.4.1.3. SVD based gray-scale Image Quality Measure
 3.4.1.4. Difference Image Visibility
 3.4.1.5. Frobenius norm
 3.4.1.6. Structural Similarity Index (SSIM)
 3.4.1.7. Normalized Correlation Coefficient (NCC)
 3.4.1.8. Pearson’s Correlation Coefficient (PCC)

Chapter 4

Survey of SVD based watermarking techniques

4.1 Spatial Domain Techniques
 4.1.1. Least significant bit (LSB) modification
 4.1.2. Correlation–based Watermarking Techniques
 in Spatial Domain
 4.1.3. Variable-Watermark Two-Dimensional Technique
 4.1.4. Technique that Detects and Corrects Changes
4.2. Transformation Domain Techniques

4.3. Singular Value Decomposition based Techniques
 4.3.1. Global and Block-based Techniques
 4.3.2. Hybrid Watermarking Schemes using SVD

Chapter 5

Robustness of Watermark-Recovery Algorithms under Various Attacks: A Simulation Study

5. Objectives of this Dissertation

 5.1 Algorithm 1: Chandra’s- Global approach
 5.1.1. Description of Algorithm
 5.1.2. Implementation and Results
 5.1.3. Discussion on Results
 5.1.4. Simulation of Attacks
 5.1.5. Comments on Simulation of Attacks

 5.2 Algorithm 2: Chandra’s Block-based SVD technique
 5.2.1. Description of Algorithm
 5.2.2. Implementation and Results
 5.2.3. Discussion on Results
 5.2.4. Simulation of Attacks

 5.3 Algorithm 3: Zhou’s Block-based SVD Technique
 5.3.1. Description of Algorithm
 5.3.2. Implementation and Results
 5.3.3. Discussion on the Results
 5.3.4. Simulation of Attacks
 5.3.5. Comments on Simulation of Attacks

 5.4 Algorithm 4: DCT-SVD Domain Watermarking
 5.4.1. Description of Algorithm
 5.4.2. Implementation and Results
5.4.3. Discussion on the Results
5.4.4. Simulation of Attacks
5.4.5. Comments on Simulation of Attacks

5.5. Algorithm 5: DWT-SVD Domain Watermarking
5.5.1. Description of Algorithm
5.5.2. Implementation and Results
5.5.3. Discussion on the Results
5.5.4. Simulation of Attacks
5.5.5. Comments on Simulation of Attacks

Chapter 6
Watermarking Capacity Issues

6. Watermarking as a Digital Communication Problem
 6.1. Related work: Literature Survey
 6.2. Spread spectrum implementation
 6.2.1. Evaluation of capacity of watermark
 6.2.2. Results
 6.3. Framework for estimating the capacity of the Watermark under attacks (AWGN and Compression)
 6.3.1. Model description
 6.3.2. Simulation experiments and results
 6.4 Capacity analysis in the Spatial Domain

Chapter 7
Conclusions and Future Directions

References

Papers Published / Presented
List of figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A classification of information hiding techniques based on [25, 26]</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Generic digital watermarking scheme</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Digital watermarking techniques based on embedding domain</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Types of attacks on watermarking system based on [12]</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>The space of all watermarking methods for copyright protection [48]</td>
<td>23</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Host image, watermark, stego images and extracted watermarks from</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>them for different values of alpha used in example 1. (Algorithm 1)</td>
<td></td>
</tr>
<tr>
<td>5.1.2</td>
<td>Host image, watermark, stego images and extracted watermarks for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>different values of alpha used in example 2. (Algorithm 1)</td>
<td></td>
</tr>
<tr>
<td>5.1.3</td>
<td>Host image and watermark pair used in example 3. (Algorithm 1)</td>
<td></td>
</tr>
<tr>
<td>5.1.4</td>
<td>Host image and watermark pair used in example 4. (Algorithm 1)</td>
<td></td>
</tr>
<tr>
<td>5.1.5</td>
<td>Attack free watermarked image, original watermark, and extracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.6</td>
<td>10% compressed stego image and the extracted watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.7</td>
<td>30% compressed stego image and the extracted watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.8</td>
<td>50% compressed stego image and the extracted watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.9</td>
<td>Gaussian noise (0, 0.002) attacked stego image and the extracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.10</td>
<td>Gaussian noise (0, 0.005) attacked stego image and the extracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.11</td>
<td>Salt and pepper noise attacked stego image and the extracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.12</td>
<td>Resized and corrected stego image and the extracted watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.13</td>
<td>Scaled down stego image and the extracted watermark</td>
<td></td>
</tr>
<tr>
<td>5.1.14</td>
<td>Cropped stego image and the extracted watermark</td>
<td></td>
</tr>
</tbody>
</table>
5.1.15. 10 degrees rotated stego image and the extracted watermark
5.1.16. Extracted watermark from bilinear rotated image
5.1.17. Extracted watermark from bicubic rotated image
5.2.1. Host image and watermark used in Example 1 (Algorithm 2)
5.3.1 Host, watermark image, stego images and extracted watermarks for different values of alpha for example 1. (Algorithm 3)
5.3.2. Host, watermark, stego images and extracted watermarks for different values of alpha for example 2. (Algorithm 3)
5.3.3 Host and watermark image pair used in example 3. (Algorithm 3)
5.3.4. Host and watermark image pair used in example 4. (Algorithm 3)
5.3.5. Attack free stego image, original watermark, and extracted watermark
5.3.6. 10% compressed stego image and the extracted watermark
5.3.7. 30% compressed stego image and the extracted watermark
5.3.8. 50% compressed stego image and the extracted watermark
5.3.9. Gaussian noise (0, 0.002) attacked stego image and the extracted watermark.
5.3.10. Gaussian noise (0, 0.005) attacked stego image and the extracted watermark.
5.3.11. Salt and pepper noise attacked stego image and the extracted watermark.
5.3.12. Cropped stego image and the extracted watermark
5.3.13. Resized and corrected stego image and the extracted watermark
5.3.14. Scaled down stego image and the extracted watermark
5.3.15. 10° rotated stego image and the extracted watermark
5.3.16. Extracted watermark from 10° rotated (bilinear) image
5.3.17. Extracted watermark from 10° rotated (bicubic) image
5.3.18. Cover image, attack free stego image, original watermark, and extracted watermark used in example 2. (Algorithm 3)
5.3.19. 10% compressed stego image and the extracted watermark
5.3.20. 30% compressed stego image and the extracted watermark
5.3.13. Gaussian noise (0, 0.005) attacked stego image
5.4.14. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.13.
5.4.15. Salt and pepper noise (0.005) attacked stego image
5.4.16. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.15.
5.4.17. Resized and corrected stego image
5.4.18. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.17.
5.4.19. Scaled down stego image
5.4.20. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.19.
5.4.21. Cropped stego image
5.4.22. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.21.
5.4.23. 10^6 rotated stego image using nearest interpolation method
5.4.24. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.23.
5.4.25. 10^6 rotated stego image using bilinear interpolation method
5.4.26. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.25.
5.4.27. 10^6 rotated stego image using bi-cubic interpolation method
5.4.28. Watermarks Extracted from bands B_1, B_2, B_3 and B_4 of the image shown in Figure 5.4.27.
5.4.29. Original, extracted watermark and inversion of extracted watermarks
5.5.1. Host and watermark images used in example 1
5.5.2. Stego images and extracted watermarks from four bands (LL, HL, LH and HH) for different values of alpha
5.5.3. Watermarks extracted from sub bands LL, HL, LH and HH of attack free stego image for alpha = 0.1
| 5.5.4. | 10% compressed stego image |
| 5.5.5. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.4. |
| 5.5.6. | 30% compressed stego image |
| 5.5.7. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.6 |
| 5.5.8. | 50% compressed stego image |
| 5.5.9. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.8. |
| 5.5.10. | Gaussian noise (0, 0.002) attacked stego image |
| 5.5.11. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.10. |
| 5.5.12. | Gaussian noise (0, 0.005) attacked stego image |
| 5.5.13. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.12. |
| 5.5.14. | Salt and pepper noise (0.005) attacked stego image |
| 5.5.15. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.14. |
| 5.5.16. | Resized and corrected stego image |
| 5.5.17. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.16. |
| 5.5.18. | Scaled down stego image |
| 5.5.19. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.18. |
| 5.5.20. | Cropped stego image |
| 5.5.21. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.20. |
| 5.5.22. | 10° rotated stego image using nearest interpolation method |
| 5.5.23. | Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.22. |
5.5.24. 10^0 rotated stego image using bilinear interpolation method
5.5.25. Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.24
5.5.26. 10^0 rotated stego image using bicubic interpolation method
5.5.27. Watermarks extracted from sub bands LL, HL, LH and HH of the image shown in Figure 5.5.4.
6.2.1. Test images used for simulation
6.2.2. Graph showing the variation of MSE with SNR.
6.2.3. Graph showing the variation of probability of correct detection with SNR
6.2.4. Graph showing the variation of probability of wrong detection with SNR
6.2.5. Graph showing the variation of miss probability with SNR
6.2.6. Graph showing the variation of quality factor with SNR
6.3.1. The distortion introduced by the hider and the attacker in the k^{th} channel
6.3.2. Original host and stego images for spread length 1,2,4,8 and 16 for example 1
6.3.3. Original host and stego images for spread length 1,2,4,8 and 16 for example 2
6.3.4. Plot showing the probability of correct detection Vs spreading length under AWGN and compression attacks for the two test images
6.4.1 Eight Bit planes for example 1 (Micros_2) (Scaled (+128) for visibility)
6.4.2 Eight Bit planes for example 2 (Lena). The images are scaled and translated (+128) for visibility
6.4.3 Stego images for example 1 (Micros_1) after 100% modification of 0, 1, 2, and 3 biplanes respectively.
6.4.4 Stego images for example 2 (lena) after 100% modification of 0,1,2, and 3 biplanes respectively.
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Classification of watermarking based on attributes</td>
<td>17</td>
</tr>
<tr>
<td>5.1.1-5.1.4</td>
<td>Tables showing the error metrics between original and watermarked images (MSE, PSNR, R_error, and Q_Fact) with respect to the controllable parameter alpha for the four examples of algorithm 1</td>
<td>63</td>
</tr>
<tr>
<td>5.1.5.</td>
<td>Objective evaluation of original and attacked images (Algorithm 1)</td>
<td>72</td>
</tr>
<tr>
<td>5.1.6.</td>
<td>Correlation between original and extracted watermarks. (Algorithm 1)</td>
<td>73</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Table showing the error metrics between original and watermarked images (MSE, PSNR, R_error, and Q_Fact) with respect to the controllable parameter alpha in example 1. (Algorithm 2)</td>
<td>79</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Table showing the error metrics between original and watermarked images (MSE, PSNR, R_error, and Q_Fact) with respect to the block size. Scaling factor of 35 is used. (Algorithm 2)</td>
<td>81</td>
</tr>
<tr>
<td>5.3.1-5.3.4</td>
<td>Table showing the error metrics between original and watermarked host images with respect to the controllable parameter alpha for four examples of algorithm 3</td>
<td>87</td>
</tr>
<tr>
<td>5.3.5.</td>
<td>Singular values for a few blocks (block size 8 x 8) (Algorithm 3)</td>
<td>93</td>
</tr>
<tr>
<td>5.3.6.</td>
<td>Objective evaluation of original and attacked images of example 1 (Algorithm 3)</td>
<td>96</td>
</tr>
<tr>
<td>5.3.7.</td>
<td>Correlation between original and extracted watermarks of example 1 (Algorithm 3)</td>
<td>97</td>
</tr>
<tr>
<td>5.3.8.</td>
<td>Objective evaluation of original and attacked images of example 2 (Algorithm 3)</td>
<td>102</td>
</tr>
</tbody>
</table>
5.3.9 Correlation between original and extracted watermarks of example 2 (Algorithm 3) 103
5.4.1 Objective evaluation of Original and attacked images (Algorithm 4) 112
5.5.1 Table showing the error metrics between original and watermarked host images with respect to the controllable parameter alpha (Algorithm 5) 124
5.5.2 Objective evaluation of Original and attacked images (Algorithm 5) 125
6.2.1 to 6.2.4 Tables showing the error metrics (MSE, quality factor) and probability of detections (p(c), p(w), p(m)) between original and watermarked images for the four test images used in simulation for different SNRs. 143
6.3.1 Table showing the values of p(c), p(w), MSE/distortions and PSNR for different spread lengths for example 1 (lena image) under AWGN attack 151
6.3.2 Table showing the values of p(c), p(w), MSE/distortions and PSNR for different spread lengths for example 1 (lena image) under compression attack 152
6.3.3 Table showing the values of p(c), p(w), MSE/distortions and PSNR for different spread lengths for example 2 (paddy as cover image) under AWGN attack 152
6.3.4 Table showing the values of p(c), p(w), MSE/distortions and PSNR for different spread lengths for example 2 under compression attack 153
6.4.1 Modification of '0' bit plane. 157
6.4.2 Modification of '1' bit plane 158
6.4.3 Modification of '2' bit plane 158
6.4.4 Modification of '3' bit plane 158
6.4.5 Number of bits changed in bit plane manipulations. 159