CONTENTS

CHAPTER I

1.1 Overview 1
1.2 Solid Waste Generation 3
1.3 Industrial Setting In Andhra Pradesh 12
1.4 Types of Hazardous Wastes generated in Andhra Pradesh 15
1.5 Hyderabad 15
1.5.1 Major Industrial Areas In and Around Hyderabad 16
1.5.1.1 Hyderabad District 16
1.5.1.2 Ranga Reddy District 17
1.5.1.3 Medak District 17
1.6 Common Effluent Treatment Plants 18
1.6.1 Patancheru Envirotech Limited 19
1.7 Technologies For Remediation of Hazardous Wastes 22
1.7.1 Physico-Chemical Technologies for Remediation 22
1.7.2 Biological Technologies for Remediation 23
1.7.2.1 Bioremediation technologies 24
1.8 Scope of the Ph.D Program 25
1.9 Technical Approach 27
1.10 Objectives of the Ph.D program 28
1.11 Organization of thesis 30
References 32

CHAPTER II

2.1 Introduction 33
2.2 Need for Management of These Wastes 35
2.3 Collection of sludge samples 39
2.4 Physico-Chemical Characterization of Sludge 40
2.5 Results and Discussion 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Phytotoxicity of Primary and Secondary Sludges</td>
<td>56</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Review of Literature</td>
<td>57</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Application Rates</td>
<td>59</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>Nutrients</td>
<td>59</td>
</tr>
<tr>
<td>2.6.3.2</td>
<td>Metals</td>
<td>60</td>
</tr>
<tr>
<td>2.6.3.3</td>
<td>Synthetic Organic Chemicals</td>
<td>64</td>
</tr>
<tr>
<td>2.6.3.4</td>
<td>Sludge as a fertilizer</td>
<td>64</td>
</tr>
<tr>
<td>2.6.3.5</td>
<td>Disease-Causing Organisms</td>
<td>64</td>
</tr>
<tr>
<td>2.6.3.6</td>
<td>Heavy Metals</td>
<td>64</td>
</tr>
<tr>
<td>2.6.3.7</td>
<td>Insects and Odors</td>
<td>64</td>
</tr>
<tr>
<td>2.6.3.8</td>
<td>Sewage sludge</td>
<td>65</td>
</tr>
<tr>
<td>2.6.3.9</td>
<td>Animal health</td>
<td>67</td>
</tr>
<tr>
<td>2.6.3.10</td>
<td>Human health</td>
<td>67</td>
</tr>
<tr>
<td>2.6.3.11</td>
<td>Sludge disposal</td>
<td>68</td>
</tr>
<tr>
<td>2.6.3.12</td>
<td>Sludge characteristics affecting land application</td>
<td>73</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Imbibition</td>
<td>75</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Plant nutrition</td>
<td>77</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Nitrogen</td>
<td>78</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Plant chlorophyll</td>
<td>82</td>
</tr>
<tr>
<td>2.6.8</td>
<td>Chlorophyll as a Photoreceptor</td>
<td>83</td>
</tr>
<tr>
<td>2.6.9</td>
<td>Factors affecting the rate of photosynthesis</td>
<td>84</td>
</tr>
<tr>
<td>2.7</td>
<td>Phytotoxicity</td>
<td>87</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Phytotoxicity Experiments, Results and Discussion</td>
<td>88</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Conclusion Phyto-Toxicity Experiments</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>98</td>
</tr>
</tbody>
</table>

CHAPTER III

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Advanced Oxidation Methods</td>
<td>99</td>
</tr>
<tr>
<td>3.2</td>
<td>Physico Chemical Properties of Some Commonly Used Oxidants</td>
<td>106</td>
</tr>
</tbody>
</table>
3.2.1 Hydrogen Peroxide
3.2.2 H₂O₂ Processes
3.2.2.1 BOD and COD Reduction Using Hydrogen Peroxide
3.2.2.2 Environmental applications of H₂O₂
3.2.3 Fenton system (H₂O₂/Fe²⁺)
3.2.4 Ozone
3.2.5 Ozone + hydrogen peroxide (O₃/H₂O₂) – (peroxone)
3.2.6 Ozone + catalyst (O₃/CAT)
3.2.7 Calcium Peroxide & Magnesium Peroxide
3.2.8 Photochemical methods
3.2.8.1 Ozone–UV radiation (O₃/UV)
3.2.8.2 Hydrogen peroxide–UV radiation (H₂O₂/UV)
3.2.8.3 Ozone–hydrogen peroxide–UV radiation (O₃/H₂O₂/UV)
3.2.8.4 Photo-Fenton and Fenton-like systems
3.2.8.5 Photocatalytic oxidation (UV/TiO₂)

References

CHAPTER IV

4.1 Introduction
4.2 Review of Earlier Work
4.3 Some Practical Examples of Application of Advanced Oxidation Processes
4.3.1 Applications and Mechanisms
4.3.2 Supplemental oxygen source
4.3.3 Fenton’s Reagent
4.3.3.1 Optimum operating conditions for Fenton’s oxidation
4.3.4 Calcium and magnesium peroxide
4.3.4.1 Applications of magnesium peroxide
4.3.4.2 Applications of Calcium peroxide
4.4 Experimental
4.4.1 Materials and Methods for oxidation methodologies
5.4.1 Lime 253
5.4.2 Modified lime 254
5.4.3 Activated carbon 255
5.4.4 Soluble phosphates 256
5.4.5 Thermoplastic materials 256
5.4.6 Soluble silicates 257
5.4.7 Organically modified clays 257
5.4.8 Asphalt emulsions 258
5.5 Solidification 259
5.5.1 Factors limiting the applicability and effectiveness of in situ S/S 262
5.5.2 Objectives of S/S Technologies 263
5.6 Solidification Technologies 264
5.6.1 Cement 265
5.6.2 Pozzolans 268
5.6.3 Polyethylene extrusion 269
5.6.4 Ground granulated blast-furnace slag 270
5.6.5 Fly ash 271
5.6.6 Clay plasticizers 272
5.6.7 Radioactive waste solidification 273
5.6.8 Bituminisation 273
5.6.9 Modified sulphur cement 273
5.6.10 Vermiculite 274
5.6.11 Vitrification 274
5.7 Literature Review on various Stabilization and solidification technologies 276
5.8 Studies on the Usage of Primary Sludge of PETL along with Clay for Bricks 300
5.8.1 Materials and methods 301
5.8.2 Clay properties 303
5.8.3 Preparation of Block 303
5.8.4 Dimensions of Brick
5.8.5 Preparation of Sludge - Clay mixed Bricks
5.8.6 Compressive Strength N/mm²
5.8.7 Water absorption (% dry mass)
5.8.8 Linear firing shrinkage %
5.8.9 Weight loss on ignition %
5.8.10 Bulk density (g/cm³)
5.8.11 Heavy metal leaching
5.9 Conclusions
References

CHAPTER VI
6.1 Bio Remediation Technologies
6.2 Composting
6.3 Composting Biology
6.4 The Composting Process
6.5 Factors Affecting the Composting Process
6.5.1 C:N Ratio and other nutrients
6.5.2 Moisture
6.5.3 Particle size
6.5.4 Aeration
6.5.5 Temperature
6.5.6 Turning frequency
6.5.7 pH
6.5.8 Microorganisms
6.6 Benefits of Using Compost In Agriculture
6.7 Innovative Uses of Compost
6.7.1 Bioremediation and Pollution Prevention
6.7.2 Disease Control For Plants and Animals
6.7.3 Erosion Control, Turf Remediation, and Landscaping
6.7.4 Impacts on Soil Physical Properties
6.7.5 Impacts on Soil Biological Properties 359
6.7.6 Compost and Plant Nutrition 361
6.8 Literature Review on various composting technologies 362
6.8.1 Composting of explosives 362
6.8.2 Composting aromatic hydrocarbons 364
6.8.3 Composting of petroleum hydrocarbons 371
6.8.4 Composting of municipal solid wastes 372
6.8.5 Composting of contaminated soils 388
6.8.6 Composting of other organic materials 391
6.9 Composting Technologies 404
6.9.1 Windrow Composting 406
6.9.1.1 Passively aerated windrow system (PAWS) 408
6.9.2 Aerated Pile Composting 409
6.9.2.1 Static Piles 409
6.9.2.2 Forced Aerated Static Piles 409
6.9.3 in-Vessel Composting 410
6.9.3.1 Enclosed Composting 410
6.9.3.2 Static bed bioreactor for composting 411
6.9.3.3 Laboratory Scale Bio Reactors for Research 412
6.9.3.4 Bench Scale Composting Reactors 415
6.9.4 Comparing the Composting Technologies 418
6.10 Assessment of Compost Stabilization 419
6.10.1 Qualities of Compost product and Parameters to be assessed to obtain a better-composted product 419
6.11 On-site Studies on the Application of Composting technologies for Biostabilization and Detoxification of PETL Sludges 422
6.11.1 Analytical methods 422
6.11.2 Various stages of Composting 431
6.11.3 The author has taken up on-site studies with the following themes 432
6.11.3.1 On-Site composting studies with both Primary and Secondary sludges of PETL without adding any amendments
6.11.3.1.1 On-site Experimental Set-up
6.11.3.1.2 Results and Discussion
6.11.3.2 On-site Composting Experiments performed by adding amendments
6.11.3.2.1 Results and Discussion
6.12 Lab-Scale Composting Experiments Performed With Secondary Sludge for Biostabilization and Detoxification of PETL Sludge
6.12.1 Composting Of Secondary Sludge with Variation in Turning Frequency
6.12.1.1 Pile Setup
6.12.1.2 Changes in various parameters during composting
6.12.1.3 Conclusions
6.12.2 Composting Of Secondary Sludge with Variation in Moisture Contents
6.12.2.1 Changes in various parameters during composting
6.12.2.2 Conclusions
6.12.3 Composting Of Secondary Sludge with Variation in C/N
6.12.3.1 Pile Setup
6.12.3.2 Changes in Physicochemical parameters during composting
6.12.3.3 Conclusions
6.12.4 Composting Of Secondary Sludge at Optimum Conditions
6.12.4.1 Experimental
6.12.4.2 Results and Discussion
6.12.4.3 Characterization of Final Compost
6.13 Composting Economics
6.13.1 Background
6.13.2 Siting 522
6.13.3 Facility size 522
6.13.4 Ground cover 522
6.13.5 Machinery 523
6.13.6 Overview of prototype facilities 524
6.13.7 Costs of prototype facilities 525
 6.13.7.1 Capital costs 526
 6.13.7.2 Fixed costs 527
 6.13.7.3 Operating costs 527
 6.13.7.4 Total annual costs 528
 6.13.7.5 Per dry Mg costs 529
 Reference 537
 Conclusions
 List of Publications