LIST OF TABLES

CHAPTER 1 INTRODUCTION

| Table 1.1 | Potential biotechnological uses of bacteriorhodopsin | 4 |

CHAPTER 2 REVIEW OF LITERATURE

Table 2.1	Larsen’s four division of microbes based on NaCl requirement	10
Table 2.2	Kushner’s five division of microbes based on NaCl requirement	11
Table 2.3	Genes that contribute to MLSA	13
Table 2.4	Glycolipid composition of few Halobacterial genera	15
Table 2.5	Halocin characteristics	38

CHAPTER 3 MATERIALS AND METHODS

| Table.3.1 | Primers used for amplification of 16S rDNA of Halobacteria | 45 |
| Table.3.2 | Octadiscs Antibiotics and concentration | 51 |

CHAPTER 4 RESULTS

| Table 4.1 | Ionic composition of the saltpan sample used to isolate halocin producing strain | 80 |
| Table 4.2 | Characteristics of strains BTSH10 and BTSH03 | 83 |
Table 4.3 Taxonomic hierarchy of *Natrinema* sp. BTSH10
Table 4.4 Taxonomic hierarchy of *Halorubrum* sp. BTSH03
Table 4.5 Lipids present in the cell wall of *Natrinema* sp. BTSH10
Table 4.6 Fatty acid content of *Natrinema* sp. BTSH10
Table 4.7 ICP-AES analysis of the salt crystal formed by *Natrinema* sp. BTSH10
Table 4.8 Concentration of different aminoacid content of halocin SH10 and its properties
Table 4.9 *In vitro* short term toxicity studies of halocin SH10 against DLA cells
Table 4.10 Effect of halocin SH10 on antitumor parameters of DLA bearing mice

APPENDIX

Table 4.11 Antibiotic sensitivity and resistance profile of *Natrinema* sp. BTSH10 and *Halorubrum* sp. BTSH03
LIST OF FIGURES

CHAPTER 1 INTRODUCTION

CHAPTER 2 REVIEW OF LITERATURE

Figure 2.1 Twofold serial dilution method for halocin assay

CHAPTER 3 MATERIALS AND METHODS

CHAPTER 4 RESULTS

Fig 4.1 Preliminary screening on Zobell’s agar medium (15% NaCl)

Fig. 4.2 Photomicrograph showing Scanning Electron Microscopy (SEM) of single cells of Natrinema sp. BTSH10

Fig. 4.3 Photomicrograph showing Scanning Electron Microscopy (SEM) of single cells of Halorubrum sp. BTSH03

Fig. 4.4 Growth curve of haloarchaeon Natrinema sp.BTSH10

Fig. 4.5 Growth curve of haloarchaeon Halorubrum sp.BTSH03

Fig. 4.6 The PCR amplicon of 16S rRNA gene

Fig. 4.7 The partial 16S rRNA gene sequence obtained for Natrinema sp. BTSH10

Fig. 4.8 NCBI Gen bank file data of Natrinema sp.BTSH10 with the allotted accession number
Fig. 4.9	The partial 16S rRNA gene sequence obtained for *Halorubrum* sp.BTSH03
Fig. 4.10	NCBI Gen bank file data of *Halorubrum* sp.BTSH03 with the allotted accession number
Fig. 4.11	Phylogram of *Natrinema* sp. BTSH10 showing evolutionary relationships of 16 taxa (linearized)
Fig. 4.12	Phylogram of *Halorubrum* sp. BTSH03 showing evolutionary relationships of 20 taxa (linearized)
Fig. 4.13	Thin layer chromatography of cell wall lipids on silica gel
Fig. 4.14	GC-MS separation of the lipids isolated from *Natrinema* sp.BTSH10
Fig. 4.15	Fatty acid profile of *Natrinema* sp.BTSH10 obtained after FAME analysis
Fig. 4.16	Salt crystals formed in Haloarchaea growth medium
Fig. 4.17	Scanning Electron Microscope images of the crystal
Fig. 4.18	The powder X-ray diffraction spectrum of the crystal formed by *Natrinema* sp.BTSH10
Fig. 4.19	FTIR spectrum of the crystal formed by *Natrinema* sp.BTSH10
Fig. 4.20	UV –vis- NIR spectrum of the crystal formed by *Natrinema* sp. BTSH10
Fig. 4.21	TGA-DTA analysis of the crystal formed by *Natrinema* sp.BTSH10
Fig. 4.22	Effect of different incubation temperatures on halocin production
Fig. 4.23	Effect of different pH on halocin production by *Natrinema* sp.
Fig 4.24	Effect of different concentrations of NaCl on halocin
production by *Natrinema* sp. BTSH10

Fig. 4.25 Effect of different carbon sources on halocin production by *Natrinema* sp. BTSH10

Fig. 4.26 Effect of different nitrogen sources on halocin production by *Natrinema* sp. BTSH10

Fig. 4.27 Effect of different inorganic salts on halocin production by *Natrinema* sp. BTSH10

Fig. 4.28 Effect of different agitation rates on halocin production by *Natrinema* sp. BTSH10

Fig. 4.29 Time course experiment on halocin production by *Natrinema* sp. BTSH10

Fig. 4.30 Gel filtration chromatography elution profile of halocin that showed halocin activity

Fig. 4.31 HPLC profile showing purity of Halocin during different stages of purification

Fig. 4.32 Tricine-PAGE and Bioautography assay

Fig. 4.33 Action of halocin SH10 on indicator strain *Halorubrum sp.* BTSH03 (Phase contrast microscopic view)

Fig. 4.34 MALDI profile of the 20kDa halocin

Fig. 4.35 MASCOT search for the 20kDa halocin showing similarity results

Fig. 4.36 NMR spectrum of Halocin SH10 showing the peaks at aliphatic range

Fig. 4.37 Thermostability of halocin SH10

Fig. 4.38 pH stability of halocin SH10

Fig. 4.39 Effect of organic solvents on halocin SH10

Fig. 4.40 Bacterial load (CFU) on hides upon treatment with Halocin SH10
Fig. 4.41 *In vitro* anticancer activity of the halocin SH10 against HBL100 cell lines
Fig. 4.42 Cytotoxicity of halocin SH10 against HBL100 cell lines
Fig. 4.43 *In vitro* anticancer activity of the halocin SH10 against HeLa cell lines
Fig. 4.44 Cytotoxicity of halocin SH10 against HeLa cell lines
Fig. 4.45 *In vitro* anticancer activity of the halocin SH10 against A549 cell lines
Fig. 4.46 Cytotoxicity of halocin SH10 against A549 cell lines
Fig. 4.47 *In vitro* anticancer activity of the halocin SH10 against OAW42 cell lines
Fig. 4.48 Cytotoxicity of halocin SH10 against OAW42 cell lines
Fig. 4.49 *In vitro* anticancer activity of the halocin SH10 against HeLa cell lines
Fig. 4.50 Cytotoxicity of halocin SH10 against HeLa cell lines
Fig. 4.51 Effect of halocin SH10 on average life span of DLA tumor bearing mice
Fig. 4.52 Effect of halocin SH10 on % increase of average life span of DLA tumor bearing mice
Fig. 4.53 Effect of halocin SH10 on % increase on body weight of DLA tumor bearing mice
Fig. 4.54 Effect of halocin SH10 on total WBC count of DLA tumor bearing mice
Fig. 4.55 Effect of halocin SH10 on total RBC count of DLA tumor bearing mice
Fig. 4.56 Effect of halocin SH10 on haemoglobin content of DLA tumor bearing mice
Appendix

Fig. 4.57 Evolutionary relationships of 44 taxa of *Halobacteriaceae* family 201

Fig. 4.58 Cladogram that highlights the phyla of the kingdom Euryarchaeota 202