List of Figures

Figure 1.1: Schematic diagram of classification of organic semiconductor 3

Figure 1.2: Ethylene molecule with σ and π bonds. Molecular bonding leads to bonding and anti-bonding states, both corresponding to σ and π bonding orbitals. In solid form, the resulting HUMO and LUMO states take a form of bands, analogous to crystalline semiconductors but the bandwidths are significantly smaller [This figure is taken from D. Gupta, Organics electronics II, In Reach Symposium, 111 (2007)] 6

Figure 1.3: a) Formation of the valance band and conduction band as a result of overcrowded orbital energy levels. b) Collection of molecular orbitals forming band separated by energy band gap 7

Figure 1.4: Chemical structure of some conducting polymers [This figure is taken from A. J. Heeger, Chem. Soc. Rev. 39, 2354 (2010)] 8

Figure 1.5: Schematic diagram of structural changes in P3HT: PCBM films before and after thermal annealing [This figure is taken from Erb et al, Adv. Func. Mater. 15, 1193 (2005)] 12

Figure 2.1: Schematic diagram of basic principle of spin coating 33

Figure 2.2: Spin coating unit [SCU Apex instrument, 2007] in Banasthali Vidyapith (left) and a close view of the vacuum chuck (right) 35

Figure 2.3: Cross section through a rotary oil pump where A is the rotor, b the stator, C the inlet port and D the exhaust valve 38

Figure 2.4: Pumping action of vapor diffusion pump 40

Figure 2.5: Section through (a) Pirani Gauge head and (b) Perspective view of electrode structure of Penning gauge 41

Figure 2.6: Thermal Vacuum Unit [Vacuum Equipment Co., Noida] in Banasthali Vidyapith ... 42

Figure 2.7: Schematic diagram of X-ray diffraction from parallel planes in a crystal .. 44
Figure 2.8: Schematic view of XRD ...45
Figure 2.9: XRD [PANalytical, Xpert Pro] in Himachal Pradesh University...47
Figure 2.10: Schematic diagram of various interaction of an electron with thin specimen ..49
Figure 2.11: Schematic view of FESEM..51
Figure 2.12: FESEM [TESCAN MIRA 3 LMU] in Banasthali Vidyapith54
Figure 2.13: Reflection of polarized light from bare surface (a) Film covered surface (b) ...56
Figure 2.14: Schematic Illustration of the ellipsometer set up......................59
Figure 2.15: Ellipsometer [J. E. Woollam VASE32 Model] in NPL.................60
Figure 3.1: Prototype of the proposed device structure...............................64
Figure 3.2: Schematic diagram to prepare the blend solution65
Figure 3.3: PEDOT: PSS layer deposition (a) Before RCA treatment (b) After RCA treatment...66
Figure 3.4: Schematic diagram of RCA cleaning of ITO glass substrate67
Figure 3.5: Microscopic image of blend film cast from toluene solution (a) and 1, 2 DCB (b) ...68
Figure 3.6: Schematic diagram of synthesis methodology............................69
Figure 3.7: (a) Device just after Al deposition, (b) & (c) Device after removing the mask, (d) After making contacts with silver paste ...70
Figure 3.8: Microscopic image of the device after wiping active layer from side of Al. Images a) & b) shows the junction from where mask was removed, whereas images c) & d) shows the scratches and defect on top Al layer ...71
Figure 3.9: The Current-Voltage Characteristics of MEH-PPV: PCBM sample ..72
Figure 3.10: Schematic diagram showing the correct methodology73
Figure 3.11: I-V characteristics of the fabricated sample..............................74
Figure 4.1: Energy diagram of organic electronic device using metal/organic schottky barrier [This figure is taken from H. Ishii et al, Adv. Mater. 11, 605 (1999)]

Figure 4.2: a) Electronic structure of a metal and organic solid at infinite distance. b) Contact of a metal and a thin organic solid layer. The organic layer is within the electric field of the surface dipole layer of a metal, and the interfacial vacuum level is common. When the two solids come into real contact the actual potential well may become as shown by the broken line c) schematic representation of a) assuming common (virtual) VLs at the interface. Φ_n^m and Φ_p^m denote the injection barriers for electron and hole respectively. I: solid state ionization energy, A: Solid state electron affinity, Φ: work function. d) Interfacial energy diagram with a shift of VL Δ at the interface due to dipole layer formation. In this figure, the organic side is charged positive, making this side more comfortable (low energy) for an electron and making the sign of Δ negative [This figure is taken from H. Ishii et al, Adv. Mater. 11, 605 (1999)]

Figure 4.3: Interfacial energy diagram with band bending. The energy levels are bent by the charge redistribution in the organic layer to achieve the electrical equilibrium with the alignment of the Fermi levels of the two sides. This leads to the buildup of built-in potential V_{bi} within a diffusion layer of thickness W. (a) and (b) correspond to the cases without and with VL shift in previous figures c) and respectively [This figure is taken from H. Ishii et al, Adv. Mater. 11, 605 (1999)]

Figure 4.4: Top- Schematic model of the samples. Composite medium constitute a mixture of P3HT and PCBM phase. Energy band diagram of sample A (Bottom-Left) and Sample B (Bottom-Right)
Figure 4.5: Oxygen uptake in atom % for spin coated films of P3HT, PCBM and PEDOT as a result of illumination (1000 W m$^{-2}$, 72 ± 2 °C) in ambient air (25 ± 5 % rh). The corresponding plot for P3HT: PCBM is not shown for clarity. The horizontal dashed line represents 0 atom %. The inset is XPS data calibrated against time of flight secondary ion mass spectrometry (TOF - SIMS) data for P3HT: PCBM. Each point is an average of five measurements on different surface locations [This is not our work and taken from, Norman et al J. Am. Chem. Soc. 132, 1688] .. 89

Figure 4.6: I-V characteristics of the as prepared sample A (open square in red), sample B (open circle in blue) and after different temperatures of annealing. The temperature of annealing is indicated in respectively blocks. All measurements have been carried out at room temperature .. 90

Figure 4.7: The relation between the current density (J) and electric field (E) in the forward bias calculated using I-V characteristics of Figure 4.6. Symbols and solid lines represent the experimental data and linear fit respectively. The current density is expressed in μA/ cm2, while electric field is expressed in V/μm. The data on Y axis is not up to the real scale since the data are shifted up or down for clear visibility. The each curve is tagged with the corresponding annealing temperature 94

Figure 4.8: The value of slope (m) obtained from the linear fitting of low field segments (left panel) and high field segments (right panel) of Figure 4.7 ... 95

Figure 4.9: The relation between the current density (J) and electric field (E) in the forward bias calculated using I-V characteristics of Figure 4.6. Symbols and solid lines represent the experimental data and linear fit respectively. The current density is expressed in μA/ cm2, while the electric field is expressed in V/μm. The data on Y axis is not up to the real scale since the
data are shifted up or down for clear visibility. The each curve is tagged with the corresponding annealing temperature................. 97

Figure 4.10: The dielectric constant as a function of annealing temperature UL upper leg, LL lower leg. The three horizontal lines demonstrate the measured dielectric constant of PCBM (3.6), P3HT (3.0), and PEDOT: PSS (2.2) from other sources. The error bars have been calculated in the linear fit ... 98

Figure 4.11: Top two panels show the switching of dielectric constant which is calculated from the slopes obtained from Figure 4.6. Bottom two panels show the dielectric function measured as a function of frequency at two different fixed bias voltages. The arrows show the jump in dielectric constant by changing the bias voltage ... 102

Figure 4.12: X- ray diffraction analysis of sample A (top panel) and sample B (bottom panel). Insets in the respective panels show the magnified view of the diffraction peaks ... 103

Figure 4.13: SEM images of the morphology of the composite layer (P3HT/PCBM) deposited on PEDOT: PSS layer on ITO substrate. Four different micrographs (a) - (d) correspond to different annealing temperatures indicated on top-right corner of each micrograph. Histogram represents only the final micrograph... 106

Figure 4.14: A) Local structure of P3HT: PCBM mixtures according to the results obtained by Yin *et al* Straight lines indicate P3HT crystalline domains while curved lines indicate P3HT amorphous domains. Note the miscibility of PCBM in the amorphous domain, as well as pure PCBM domains. B) Larger scale view of the P3HT: PCBM “rivers and streams” model, where the gold denotes P3HT crystals and the black denotes the pure PCBM phase, both of which are separated by a miscible phase of amorphous P3HT and PCBM, shown in
brown [This is not our work and taken from, W. Yin et al
ACS Nano 5, 4756 (2011)] ... 108

Figure 4.15: The schematic representation of morphology illustrating
enhancement the fraction of isolated PCBM molecules and
grains as result of annealing. Dots represent PCBM molecules
while green background as P3HT amorphous phase. P3HT
crystals are shown as bunches of straight lines and PCBM
crystals are represented by black dots. Light blue dots
demonstrate PCBM molecules in amorphous phase whereas
dark blue as PCBM aggregates. White arrows in the right
panel depict the separation of large domain into two small
crystallites. The dotted enclosures highlight isolated molecules
and clusters.. 109

Figure 5.1: The wave function for the electron incident on a potential
ergy barrier (V_0)... 115

Figure 5.2: Typical I-V characteristics of tunnel diode................... 117

Figure 5.3: Schematic structure of the heterojunction device........ 118

Figure 5.4: Forward bias I-V characteristics of the as prepared device (a);
after annealing at 40 °C (b); after annealing at 60 °C (c); and
after annealing at 80 °C (d) for 2 hours each at each annealing
temperature. Three different curves in each panel correspond
to 3 repeated measurement of the sample in a sequence (1, 2 &
3).. 119

Figure 5.5: Schematic of energy band diagram of P3HT and PCBM
without any electric field. Solid lines represent the HOMO-
LUMO of amorphous phase and dotted line shows the
crystalline phase. Right: Alignment of energy levels by
applying bias to the system.. 121

Figure 5.6: Left Panel: Schematic model of 3-phase morphology, Right
Panel: SEM image of P3HT/PCBM composite................................... 122
Figure 5.7: Negative differential resistance of as prepared device (a) and after annealing at 40 °C (b) in three different measurements in a sequence of 1, 2 & 3. Lower panels (a’ & b’) are the respective derivatives of the above plots. The scattered points represent experimental data and solid lines are fits to the data. 5-degree polynomial was fitted in I-V curves, whereas single peak (a’) and double peak (b’) Gaussian function has been fitted to dI/dV versus V curves ... 123

Figure 5.8: Comparison of room temperature FWHM of dI/dV curves with other published works... 124