References


35. Bennet D.L., Davis M.W. and Hertzler B.L., the suppression of saturated nucleate boiling by forced convective flow, AIChE Symp. Ser., Vol. 76, no. 199, pp. 91-103, 1980


37. Dougall R.S. and Roshenow W.M., Film boiling on inside of vertical tubes with upward flow of the fluids at low qualities, MIT report no. 9079-26, MIT, Cambridge, MA, 1963


mixtures at 70 bar flowing in tubular and annular conduits, CISE report CISE-R-184, 1967


47. Groeneveld D.C., Post dry-out heat transfer at reactor operating conditions, Report AECL-4513, 1973


72. Kefer V., Kohler W. and Kastner W., Critical heat flux (CHF) and post-CHF heat transfer in horizontal and inclined evaporator


75. Kruzhilin G.N., Generalization of experimental data on heat transfer during boiling of liquid with natural convection (In Russian) Izvestya AN SSSR, OTN (News of academy of sciences of the USSR, /Division of Technical sciences), no 5, 1949


88. Mishima K. (1984), Boiling Burnout at Low Flow Rate and Low Pressure Conditions, Ph.D. Thesis, Kyoto University, Japan

89. Moon S.K. and Chang S.H., Classification and Prediction of the Critical Heat Flux using Fuzzy Clustering and Artificial Neural


92. Mozharov, N.A., An investigation into the critical velocity at which moisture film breaks away from the wall of steam pipe, Teploenergetika, 6:50, DSIR - trans - RTS - 1581, 1959


104. Sarma P.K., Performance of a steam generating tube with high concentration of soluble salts in the feed water, PhD thesis, Moscow Energy Institute, Moscow, USSR, 1964


144. Sarma P.K., Heat and Mass Transfer characteristics in steam generating tubes, In Russian language, Izvestia academy Nauk Div., Energetika, No. 5., (In Russian, USSR), 1964