CONTENTS

CHAPTER I INTRODUCTION

<table>
<thead>
<tr>
<th>Page No.</th>
<th>01-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 General</td>
<td></td>
</tr>
<tr>
<td>1.2 Concept of sustainability</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Criteria of sustainability</td>
<td></td>
</tr>
<tr>
<td>1.3 Philosophy and concept of watershed</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Classification of watersheds</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Conceptual design of watershed management</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Watershed management of A.P.</td>
<td></td>
</tr>
<tr>
<td>1.4 Overview of study area</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Geology of the area</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Physiography</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Drainage</td>
<td></td>
</tr>
<tr>
<td>1.4.4 Climate</td>
<td></td>
</tr>
<tr>
<td>1.5 Role of remote sensing and gis in watershed management</td>
<td></td>
</tr>
<tr>
<td>1.6 Study objectives</td>
<td></td>
</tr>
<tr>
<td>1.7 Research methodology</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER II REVIEW OF LITERATURE

| 24-31 |

CHAPTER III HYDRO METEOROLOGICAL STATUS IN THE STUDY AREA

| 32-44 |

<table>
<thead>
<tr>
<th>Page No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 General</td>
<td></td>
</tr>
<tr>
<td>3.2 Temperature</td>
<td></td>
</tr>
<tr>
<td>3.3 Rainfall</td>
<td></td>
</tr>
<tr>
<td>3.4 Cloud cover</td>
<td></td>
</tr>
<tr>
<td>3.5 Humidity</td>
<td></td>
</tr>
<tr>
<td>3.6 Wind speed</td>
<td></td>
</tr>
<tr>
<td>3.7 Potential evapotranspiration</td>
<td></td>
</tr>
</tbody>
</table>
4.1 General

4.2 Preparation of slope map

4.3 Slope analysis

4.4 Land use and land cover - cropping pattern

4.4.1 Use of land use/land cover map

4.4.2 Land use/land cover

4.4.3 Land use/land cover classification systems

4.4.4 Methodology

4.4.5 Study area land use/land cover classification system

4.4.6 Study area land use/land cover description

4.4.6.1 Built-up-land

4.4.6.2 Agricultural land

4.4.6.2.1 Kharif crop land

4.4.6.2.2 Rabi crop land

4.4.6.2.3 Double cropped area

4.4.6.2.4 Plantations

4.4.6.2.5 Fallow land

4.4.6.3 Forest land

4.4.6.4 Barren rocky area

4.4.6.5 Steep sloping areas

4.4.6.6 Waste lands

4.4.6.6.1 Land with or without scrub

4.4.6.6.2 Barren rocky/stony waste/sheet rock area

4.4.6.6.3 Gullied ravinous land

4.4.6.7 Water bodies

4.4.6.7.1 River/stream

4.4.6.7.2 Tanks
CHAPTER V SOIL MAPPING

5.1 Introduction
5.2 Soil climate
5.3 Methodology
 5.3.1 Preliminary visual interpretation
 5.3.2 Ground truth collection
 5.3.3 Post field interpretation
 5.3.4 Area estimation
5.4 Generation of derivative information
 5.4.1 Land capability classification
 5.4.2 Land irrigability classification
 5.4.2.1 Quality and quantity of water
 5.4.2.2 Drainage requirements
 5.4.2.3 Other economic considerations
5.5 Land evaluation for crop suitabilities
5.6 Physiography and soils
5.7 General description of soils
5.8 Interpretative grouping
 5.8.1 Land capability grouping
 5.8.2 Land irrigability grouping
5.9 Land suitability for individual crops
 5.9.1 Land evaluation for crops
5.10 Conclusions

CHAPTER VI GEOMORPHOMETRIC ANALYSIS

6.1 General
6.2 Classification of morphostructural genesis
6.3 Methodology
6.4 Geomorphology
 6.4.1 Geomorphic units identified in the study
 6.5.1 Valley fill
6.5.2 Alluvial fan/piedmont zone
6.5.3 Moderately weathered pediplain of Cumbum shales and phyllites
6.5.4 Shallow weathered/buried pediplain of Cumbum shales and phyllites
6.5.5 Shallow weathered pediplain of Cumbum shales and phyllites
6.5.6 Linear ridge of Cumbum quartzites
6.5.7 Pediment of Cumbum quartzites
6.5.8 Linear ridge of Bairenkonda quartzites
6.5.9 Structural hills of Bairenkonda quartzites

6.6 Drainage basin analysis

6.7 Drainage basin/catchment

6.8 Linear aspects of the drainage basin
 6.8.1 Drainage network pattern/stream pattern
 6.8.2 Stream order
 6.8.3 Bifurcation ratio
 6.8.4 Stream length
 6.8.5 Length ratio

6.9 Areal aspects of drainage basins
 6.9.1 Basin area
 6.9.2 Basin shape factor
 6.9.3 Form factor
 6.9.4 Circularity ratio
 6.9.5 Elongation ratio
 6.9.6 Texture ratio
 6.9.7 Drainage density
 6.9.8 Stream frequency

6.10 Relief aspects of the drainage basin
 6.10.1 Relief of the basin
 6.10.2 Constant of channel maintenance
 6.10.3 Length of overland flow
CHAPTER VII HYDROGEOLOGICAL STATUS

7.1 Introduction
7.2 Geological nature of the area/aquifer characteristics
 7.2.1 Shallow aquifers
 7.2.2 Deeper aquifers
7.3 Data collection
7.4 Lithological logs
7.5 Electrical resistivity studies
7.6 Well census
7.7 Waterlevel fluctuation
 7.7.1 Long term water level trends
 7.7.2 Yield analysis of bore wells
7.8 Ground water resource estimation
 7.8.1 Ground water development perspective
7.9 Hydrochemistry

CHAPTER VIII THEMATIC LAYER INTEGRATION AND ACTION PLAN GENERATION

8.0 General
8.1 Integration of land and water resource units
 8.1.1 Step 1
 8.1.1.1 Geology
 8.1.1.2 Geomorphology
 8.1.1.3 Slope
 8.1.1.4 Soil
 8.1.1.5 Land use/land cover
 8.1.1.6 Rainfall
 8.1.1.7 Ground water potential
 8.1.2 Step 2
8.1.3 Step 3

8.2 Recommended optimal land use and farming systems

8.2.1 Existing agricultural scenario

8.3 Suggested drought proofing works

8.3.1 Rain water harvesting structures

8.3.1.1 Check dams

8.3.1.2 Mini percolation tanks

8.3.2 Soil and moisture conservation

8.3.2.1 Vegetative barriers, contour bunding

8.3.2.2 Broadbed and furrow method of cultivation

8.3.2.3 Irrigation water management

8.3.3 Fodder/fuel wood/forest development

8.3.3.1 Fodder/fuel wood/silviculture/social forestry

8.3.3.2 Afforestation

8.3.3.3 Shelterbelt/strip plantation

8.3.4 Shelter belt/strip plantation along all the roads/railway tracks

8.4 Soil and water conservation measures for non-agricultural lands

8.4.1 Contour trenching

8.4.2 Gully control structures

8.4.3 Revegetation

8.4.4 Quarrying

8.4.5 Afforestation

8.4.6 Silviculture

8.4.7 Social forestry

8.4.8 Moisture conservation

8.5 Soil and water conservation measures for agricultural lands

CHAPTER IX
SOCIO-ECONOMIC IMPACT ANALYSIS AND WATERSHED PRIORITISATION

9.2 Objectives of socio-economic impact analysis
9.3 Methodology

9.4 Demographic features/socio economic data analysis
 9.4.1 Work participation
 9.4.2 Infrastructure
 9.4.3 Land holdings
 9.4.4 Irrigation
 9.4.5 Infrastructure

9.5 Integrated prioritisation
 9.5.1 Socio economic ranking
 9.5.2 Illustration of socio-economic parameters

9.6 Data analysis

9.7 Data integration

9.8 Development strategy
LIST OF FIGURES

Chapter No.

1.1 Model watershed I
1.2 Location map
1.3 Base map
1.4 Transportation network
1.5 Study area image
3.1 Rainfall distribution map III
4.1 Slope map IV
4.2 Land use/land cover map
4.3 (Field Photos) Open scrub land in the background/groundnut field in the foreground
4.4 Open scrub land in the background/kharif un-irrigated in the foreground
4.5 Wastelands with gullies and severe soil erosion
4.6 Cumbum tank spread with silted foreshore
5.1 Ombothermic graph V
5.2 Soil map
5.2a Soil legend
5.3 (Field Photos) Cumbum tank
5.4 Shallow skeletal soils on piedmont
5.5 Steep slopes with very shallow soils underlain by rock
5.6 Eroded and salt affected valley
6.1 Geomorphology map VI
6.2 Geology map
6.3 Ground water potential map
6.4 Drainage/watershed map
6.5 Drainage/sub-sheds division map
6.6f Drainage pattern and texture of six sub-sheds
6.7 Straining ordering of streams
6.8a to 6.8f

(Graphs) log. no. of streams vs order.

Order vs mean log stream length

Cum. length vs order

Six sub-sheds

7.1 Hydrograph - Turumella well

7.2 Hydrograph - Cumbum well

8.1 Action plan map

8.1a Action plan map legend

8.2 Water resources management action plan

9.1a Revenue villagewise boundary map - Ardhaveedu

9.1b Revenue villagewise boundary map - Bestavaripet

9.1c Revenue villagewise boundary map - Cumbum

9.2a Proportion of scheduled casts percent - Ardhaveedu

9.2b Proportion of scheduled casts percent - Bestavaripet

9.2c Proportion of scheduled casts percent - Cumbum

9.3a Proportion of scheduled tribe percent - Ardhaveedu

9.3b Proportion of scheduled tribe percent - Bestavaripet

9.3c Proportion of scheduled tribe percent - Cumbum

9.4 (Graphs) Percent distribution of population by activity - Ardhaveedu + Bestavaripet

9.5 Percent distribution of population by activity - Cumbum

9.6 Mandalwise population + literacy

9.7 Mandalwise SC, ST population distribution

9.8a Drainage overlay on revenue village boundary map - Ardhaveedu

9.8b Drainage overlay on revenue village boundary map - Bestavaripet

9.8c Drainage overlay on revenue village boundary map - Cumbum
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Chapter No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Remote sensing applications for sustainable agriculture</td>
<td>I</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean hydro meteorological parameters</td>
<td>III</td>
</tr>
<tr>
<td>3.2</td>
<td>Annual rainfall for the three regions</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Annual rainfall distribution (1901 - 1999)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Average monthly cloud cover</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Evapotranspiration</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Slope categories</td>
<td>IV</td>
</tr>
<tr>
<td>4.2</td>
<td>Slope area statistics</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Land use/land cover classification system</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Methodology flow chart</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Study area land use/land cover classification system</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Interpretation keys used for the study area</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Study area land use/land cover areal statistics</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Physicochemical analysis of soil samples</td>
<td>V</td>
</tr>
<tr>
<td>5.2</td>
<td>Monthly temperature and rainfall datas of Ongole</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Criteria for classifying soils into irrigability classes</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Specification for land irrigability classes</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Soil suitability criteria for tobacco</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Soil suitability criteria for cotton/chillies</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Soil suitability criteria for paddy</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Soil suitability criteria for sunflower</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Relationship between physiography and soils</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Hierarchial taxonomic classification</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Areal statistics of soils categories of the study area</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Land capability units identified in the study area</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Soil and land irrigability classes in the study area</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Soil suitability ratings for different crops</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Hydrogeomorphology methodology flow chart</td>
<td>VI</td>
</tr>
<tr>
<td>6.2</td>
<td>Characteristics of geomorphic units</td>
<td></td>
</tr>
</tbody>
</table>
6.3. Areal statistic of geomorphic units

6.4. Drainage pattern and textural details of subwatersheds

6.5. Morphometric parameters of sub-sheds

6.6. Prioritisation of sub-sheds based on morphometric parameters

7.1. Data used and the source of data collection

7.2. Litholog of Nallaguntla borewell

7.3. Litholog of Bogolu village

7.4. Resistivity and thickness of sub-surface layers from VES data (representative bore wells)

7.5. Density of wells in the study area

7.6a. Hydrogeological data of dug-cum bore wells

7.6b. Hydrogeological data of bore wells

7.6c. Hydrogeological data of representative bore wells Ardhaveedu

7.7. Long term water level fluctuations (representative bore wells)

7.8. Long term water level fluctuations (Turumella)

7.8a. Long term water level fluctuations (Cumbum)

7.9. Yield analysis of drilled borewells

7.10. Ground water draft particulars

7.11. Ground water resource and irrigation potential

7.12. Chemical quality of ground water

8.1. Methodology flow chart

8.2. BILWRUs

8.3. Silvipasture

8.4. Fodder and fuel wood plantation

8.5. Agro-forestry

8.6. Agro-horticulture

8.7. Crop areas in different mandals

8.8. BILWRUs ROLUFs drought proofing works

8.9a. Action plan for water resources

8.9b. Action plan for water resources

8.9c. Action plan for water resources
8.10 List of top feed tree species
8.11 List of suitable grasses and legumes for drought prone areas
8.12 Area statistics of action plan category distribution
9.1 Area and population
9.2 Percent distribution of population by activity
9.3 Number of villages having select amenities Bestavaripet block.
9.3a Mandal-wise village-wise availability of basic amenities
9.4 Social groupwise operational holdings
9.5 Percent holdings and area receiving irrigation as per social groups
9.6 Socio-economic backwardness - A ranking system
9.7a Integrated prioritisation of sub-sheds (Ardhaveedu)
9.7b Integrated prioritisation of sub-sheds (Bestavaripet)
9.7c Integrated prioritisation of sub-sheds (Cumbum)
9.8a Prioritisation of villages / socio-economic data (Ardhaveedu)
9.8b Prioritisation of villages / socio-economic data (Bestavaripet)
9.8c Prioritisation of villages / socio-economic data (Cumbum)