Contents

Abstract i
List of Tables ix
List of Figures xi
List of Symbols xiv
List of Abbreviations xx

Chapter 1: Introduction 1
1.1 Introduction 1
1.2 Aim of the thesis 2
1.3 Motivation of the thesis 3
1.4 Literature Survey 4
1.5 Technical Approach 5
1.6 Application of the thesis 7
1.7 Organisation of the thesis 7

Chapter 2: Various Navigational Aids for Aviation 9
2.1 Introduction 9
2.2 Primitive methods of navigation systems 10
2.3 Modern ground based navigation systems 10
2.3.1 DVOR concept 12
2.3.1.1 Doppler effect on the carrier and sideband frequencies of DVOR 14
2.3.1.2 Doppler effect on carrier and sideband frequencies 15
2.3.1.3 DVOR error analysis 16
2.3.1.4 Results and Discussion of DVOR error spread estimation 17
2.3.2 Instrument Landing System 18
2.3.2.1 Categories of ILS 19
2.3.2.2 Components of ILS 19
2.3.2.3 Aircraft ILS components 19
2.3.2.4 ILS signal format 20
2.3.2.5 Salient features of Landing 21
2.3.2.6 ILS facilities at Hyderabad airport 22
2.3.2.7 Evaluation of ILS course structure
2.3.2.7.1 Test flight measurements
2.3.2.7.2 Ground based field test receiver measurements
2.3.2.7.3 Results and Discussion
2.4 Modern satellite based navigation systems
2.5 Conclusions

Chapter 3: GPS and its Error Sources

3.1 Introduction
3.2 GPS Architecture
3.2.1 GPS Satellite Constellation
3.2.2 The Control Segment
3.2.3 The User Segment
3.3 Principle of Operation
3.4 GPS signal structure
3.5 GPS Radio Frequency Selection
3.6 GPS Observables
3.7 Errors in GPS Position fixing
3.8 Need for GPS modernization
3.8.1 GPS Modernization
3.9 Conclusions

Chapter 4: GPS And Geo Augmented Navigation (GAGAN)

4.1 Introduction
4.2 GAGAN
4.2.1 IGP grid over the Indian subcontinent
4.2.2 Navigation and PA Accuracy requirements
4.3 GAGAN benefits
4.4 Prominent errors in GAGAN
4.5 GAGAN message format and error correction data Types
4.5.1 Fast corrections
4.5.2 Ionospheric Delay corrections
4.5.2.1 Ionospheric delay corrections message type 26
List of Tables

Table 2.1 Doppler effect on carrier and sidebands
Table 2.2 VOR errors
Table 2.3 Ground calibration of DVOR for the month January-2002
Table 2.4 ILS categories
Table 2.5 GPS, GLONASS and GALILEO carrier frequencies
Table 3.1 Comparison of power levels of L1 and L2 frequencies
Table 3.2 GPS error budget
Table 4.1 Elements of GAGAN
Table 4.2 Proposed GAGAN TEC station locations
Table 4.3(a) Navigation accuracy requirements and GPS accuracy
Table 4.3(b) Precision Approach Accuracy requirements for different operation category
Table 4.4 Error budget for GPS receiver with and without augmentation
Table 4.5 Predefined World-Wide IGP Spacing
Table 4.6 Salient features of grid based Ionospheric models
Table 5.1 Time delay estimation
Table 6.1 SPR instrumental biases for the 12 day period for 13 satellites
Table 6.2 Mean standard deviation (\(\bar{\sigma} \)) of the mean SPR instrumental biases for 13 GPS satellites for the period 01 July to 12 July 2004
Table 8.1 Satellite plus receiver instrumental biases of three stations
Table 8.2. Comparison of satellite instrumental biases of three stations
Table 8.3 Satellite instrumental bias differences between the Hyderabad from the Bangalore and Visakhapatnam
Table 8.4 \(\sigma_o \) for 14 GPS satellites for the period 1st to 31st July 2004 (Hyderabad)
Table 8.5. \(\sigma_o \) for 14 GPS satellites for the period 1st to 31 July 2004 (Bangalore)
Table 8.6 Comparison of receiver bias due to hardware calibration
Table 8.5 Comparison of results due to SVD LMS, QRD, Linear adaptive filter and JPL satellite bias estimation methods
Table 8.7 Vertical TEC modeling for 3 stations
Table B1 GPS satellite ephemeris format
Table C1 Observation data format
Table C2 Navigation data format
Table D1 Message types
Table E1a Satellite biases for one month period from Hyderabad (17.44° N/ 78.47° E)
Table E1b Satellite biases for one month period from Hyderabad (17.44° N/ 78.47° E)
Table E2 Satellite instrumental biases for the one month period from Bangalore (12.95° N/ 77.68° E)
Table E3 Satellite instrumental biases for the one month period from Visakhapatnam (17.72° N/ 83.22° E)
Table E4 Mean receiver biases for 3 GAGAN receivers
List of Figures

Fig. 2.1 RF Spectrum of a DVOR
Fig. 2.2 Plan view of Doppler VOR antennas
Fig. 2.3 DVOR error spread from January-December-02
Fig. 2.4 Error spread of DVOR
Fig. 2.5 Typical locations of ILS components
Fig. 2.6 ILS course radiation patterns during different seasonal days
Fig. 3.1 Basic system elements of the GPS
Fig. 3.2a GPS orbital configuration
Fig. 3.2b Satellite positions on six orbital planes
Fig. 3.3 L1 signal structure
Fig. 3.4 Local Time Vs. VTEC
Fig. 3.5 Geomagnetic latitude Vs VTEC
Fig. 3.6 Equivalent vertical time delay vs ionospheric local time for various GPS satellites observed on 3rd Dec. 2000.
Fig. 3.7 Current and modernized signal structure of GPS
Fig. 4.1 GAGAN configuration with INRES and TEC stations
Fig. 4.2 GAGAN TEC stations
Fig. 4.3a Predefined Global IGP Grid
Fig. 4.3b IGP grid over the Indian subcontinent
Fig. 4.4 GAGAN Data Block Format
Fig. 4.5 Type 18 IGP Mask Message Format
Fig. 4.6 Type 26 Ionospheric Delay Corrections Message Format
Fig. 4.7 Ionospheric error modelling
Fig. 4.8 GAGAN user received power levels
Fig. 5.1 Klobuchar coefficients selection procedure
Fig. 5.2 Cosine model fit of Klobuchar model
Fig. 5.3 IPP and slant factor geometry
Fig. 5.4 GPS receiver data processing and various parameters estimation
Fig. 5.5 Time delay estimation of SV PRN 1
Fig. 5.6 Smoothed TECu for Hyderabad station from 0200-0205 Hrs
Fig. 6.1 Signal flow graph of the model
Fig. 6.2 Block diagram of adaptive filter model
Fig. 6.3 Detailed structure of the transversal filter components
Fig. 6.4 SPR instrumental biases for the 12 day period for 4 satellites at Hyderabad (17.431°N, 78.453°E)
Fig. 6.5 filtro instrumental biases for 13 GPS satellites for the 12-day period (1st to 12th July 2004)
Fig. 6.6 Comparison of TEC estimation after modeling of instrumental biases at Hyderabad (17.431°N, 78.4530E)
Fig. 7.1. Schematic representation of LMS method
Fig. 7.2 Diagrammatic interpretation of the SVD theorem
Fig. 8.1a. SV biases observed from Hyderabad (17.44°N/78.47°E)
Fig. 8.1b. SV biases observed from Hyderabad (17.44°N/78.47°E)
Fig. 8.2a. SV biases observed from Bangalore (12.95°N/77.68°E)
Figure 8.2b SV biases observed from Bangalore (12.95°N/77.68°E)
Fig. 8.3a. SV biases observed from Visakhapatnam (17.72°N/83.22°E)
Fig. 8.3b. SV biases observed from Visakhapatnam (17.72°N/83.22°E)
Fig. 8.4 GAGAN derived satellite biases for 11 days
Fig. 8.5 Comparison of satellite biases for various stations
Fig. 8.6 Mean receiver biases for 3 GAGAN receiver locations
Fig. 8.7a TEC dispersion observed at Hyderabad with Setting $b_R = -4.17$ nsec
Fig. 8.7b TEC dispersion observed at Hyderabad with Setting $b_R = -12$ nsec
Fig. 8.7c TEC dispersion observed at Hyderabad with Setting $b_R = 15$ nsec
Fig. 8.8. Fitted bias to the Hyderabad receiver
Fig. 8.9a TEC dispersion observed at Bangalore with setting $b_R = 3.31$ nsec
Fig. 8.9b TEC dispersion observed at Bangalore with setting $b_R = -2.5$ nsec
Fig. 8.9c TEC dispersion observed at Bangalore with setting $b_R = 15$ nsec.
Fig. 8.10 Fitted bias to the Bangalore receiver
Fig. 8.11a TEC dispersion observed at Visakhapatnam with Setting $b_R = -1.509$ nsec
Fig. 8.11b TEC dispersion observed at Visakhapatnam with Setting $b_R = -12$ nsec
Fig. 8.11c TEC dispersion observed at Visakhapatnam with Setting $b_k = 15\,\text{nsec}$

Fig. 8.12. Fitted bias to the Visakhapatnam receiver

Fig. 8.13a TEC observed from Visakhapatnam for SV s 15, 6 and 31

Fig. 8.13b TEC observed from Visakhapatnam for SVs 8, 10 and 13

Fig. 8.14a. TEC observed from Bangalore for SV s 15, 6 and 31

Fig. 8.14b TEC observed from Bangalore for SVs 8, 10 and 13

Fig. 8.15a TEC observed from Hyderabad for SV s 6, 15 and 31

Fig. 8.15b TEC observed from Hyderabad for SV s 8, 10 and 13

Fig. 8.16 TEC diurnal variation with $b, +b_w$

Fig. A1 The WGS-84 coordinate system

Fig. D1 Interrelationships of Messages
List of Symbols

M_{90} - degree of modulation of the 90 Hz component
M_{150} - degree of modulation of the 150 Hz component
E_{SBO} - amplitude of the SBO signal
E_{CSB} - amplitude of the CSB signal
ϕ_1 - carrier phase range due to L1 signal
ϕ_2 - carrier phase range due to L2 signal
ϕ_e - phase error
ϕ_r - RF phase angle between E_{SBO} and E_{CSB}
λ - true wavelength
V - velocity of the EM wave
V_o - velocity of the observer moving towards the source
f_a - frequency of the source
r - radius of the antenna ring
f - orbital frequency
a_0 - clock bias term
a_1 - clock drift term
a_2 - clock drift rate
t_{oe} - reference epoch for the definition of the coefficients
b_{SI} - Satellite differential delay
b_{Rk} - Receiver differential delay
b_i - setting receiver bias
b_{Rksi} - combined bias
G_r - receiving antenna gain
L_a - attenuation in atmosphere
L_{ta} - attenuation due to transmitting antenna
L_{ra} - attenuation due to receiving antenna
L_p - free space loss
P_r - received power
P_t - transmitted power
TEC_{ak} - slant TEC from the receiver k to the satellite i,
E - elevation angle from the receiver k to the tracked satellite i,
TEC_{vi} - vertical TEC at the ionospheric pierce point due to the satellite i.
SPR - Satellite-plus-receiver differential delay
SV_{SF_{i}} - SF of satellite vehicle number 'n' observed from receiver k to the satellite i
TEC_{vi} - vertical TEC at the ionospheric pierce point due to the satellite i.
SV_{ITEC_{n}} - measured slant TEC of SV1 at n^{th} epoch
R - upper triangular matrix
R_{a} - satellite altitude above the earth surface
I - identity matrix
d_{i} - day mean satellite differential delay
\sigma_{d_{i}} - standard deviations of biases
\bar{\sigma}_{d_{i}} - mean of \sigma_{d_{i}}
\sigma_{TEC} - standard deviation of TECs
\Sigma \sigma_{TEC} - sum of all \sigma_{TEC}
\rho_{m} - measured range
\rho - true range
T^{s} - time of transition
N_{1} - Phase ambiguity of L1 signal
N_{2} - Phase ambiguity of L2 signal
N - electron density (el/m^{2})
\Delta_{ion} - ionospheric delay
A_{k} - sum of geometric range, tropospheric error and clock error (m)
P - period of ionospheric delay function
A_{m} - amplitude of ionospheric delay function
A_{a} - aperture area of the receiving antenna (m^{2})
G_{a} - antenna with gain
DC - base ionospheric delay
t_{ion} - ionospheric time delay in the zenith direction
\phi_{om} - geomagnetic latitude of ionospheric subpoint
\epsilon^{ec} - satellite clock error
k - Boltzmann's constant dBW/K/Hz
F - Noise figure of the LNA
T_0 - Temperature of the device in degree Kelvin
B - Noise bandwidth in Hz
P_N - Noise power
\Pi_i - measurement error
A(n) - input sequence
\Sigma - diagonal matrix
Q - orthogonal matrix
\theta - angle measured counter clock wise from observer (O) to the source (S)
V_s - velocity of the source (S) moving towards the observer (O)
\Delta f_s - frequency deviation
f_c - radio frequency carrier
\phi_r - RF phase angle between SBO and CSB signals
\rho - geometric range between the satellite and receiver antenna in m
\phi_{rs} - latitude of reference station
d\rho - satellite orbit error in m
c - the speed of light (m/sec.)
dt - satellite clock error in sec.
dT - receiver clock error in sec.
dion - ionospheric delay error in m,
dtrop - tropospheric delay error in m,
\varepsilon_{mp} - code range multipath error in m
\varepsilon_{m\phi} - carrier phase multipath error in m
\varepsilon_\phi - receiver carrier noise in m.
d_{trop} - total tropospheric delay
d_{dry} - dry delay at zenith
d_{wet} - wet delay at zenith
m_{dry} - mapping factor to map the zenith dry delay to the slant direction
m_{wet} - mapping factors to map the zenith wet delay to the slant direction
e_l - number of electrons
\(\psi \) - earth center angle

\(\phi_i \) - geographic latitude of subionospheric point in radians

\(\varepsilon_p \) - receiver code noise in m

\(d_p \) - orbit errors

\(dt \) - satellite clock error

\(dT \) - receiver clock error

\(\varepsilon_{PR} \) - pseudorange noise

\(\varepsilon_p \) - carrier phase range noise and multipath

\(d_{\text{ion}} \) - ionospheric delay error

\(d_{\text{trop}} \) - tropospheric delay error

\(N \) - carrier phase integer ambiguity (in number of cycles)

\(L_1 \) - GPS signal frequency (1575.42MHz)

\(L_2 \) - GPS signal frequency (1227.5MHz)

\(D(t) \) - navigation message

\(W(t) \) - W-code

\(f_1 \) - GPS L1 signal carrier wave

\(f_2 \) - GPS L2 signal carrier wave

\(C/A \) - course acquisition code (1.023 MHz)

\(v_g \) - group velocity

\(v_p \) - phase velocity

\(c \) - speed of the light in a vacuum

\(\lambda_o \) - wavelength in a vacuum

\(dN \) - differential number of cycles

\(n_g \) - group index of refraction (troposphere and ionosphere)

\(n_p \) - phase index of refraction (troposphere and ionosphere)

\(\Delta \phi_{io} \) - phase ionospheric range delay

\(d_s \) - path length

\(\Delta P_{io} \) - group ionospheric range delay

\(\text{PR}_1 \) - pseudoranges measured on L1 frequency in m

\(\text{PR}_2 \) - pseudoranges measured on L2 frequency in m
\(\phi_{cr} \) - carrier phase range
\(\phi_{pp} \) - latitude of IPP
\(\lambda_{pp} \) - longitude of IPP
\(\phi_{ss} \) - geographic coordinate latitude
\(\lambda_{ss} \) - geographic coordinate longitude
\(\phi_{i} \) - geographic latitude of subionospheric point
\(\lambda_{i} \) - geographic longitude of subionospheric point
\(\psi_{pp} \) - earth center angle
\(\phi_{u} \) - User latitude
\(\lambda_{u} \) - User longitude
\(h_{i} \) - height of the maximum electron density (assumed to be equal to 350km)
\(h_{sat} \) - satellite height above the earth's surface
\(D_{ivp} \) - vertical ionospheric delay
\(h_{io} \) - altitude of ionospheric shell
\(h_{rs} \) - height of ionospheric reference station
\(\phi_{rs} \) - latitude of reference station
\(\phi_{m} \) - geomagnetic latitude
\(\lambda_{rs} \) - longitude of reference station
\(\varepsilon^{sc} \) - satellite clock error
\(\text{nsec} \) - nanoseconds
\(t_{oc} \) - reference epoch for the definition of the coefficients
\(e \) - eccentricity of the ellipsoid
\(A_{2} \) - satellite azimuth angle
\(t_{c} \) - satellite clock reference epoch
\(\text{ID} \) - satellite PRN number
Health - health of the Satellite
Week - current GPS week
\(t_{ce} \) - reference epoch in sec within the current week (s)
\(e^{2} \) - square of WGS-84 first eccentricity
\((e')^{2} \) - square of WGS-84 second eccentricity
M_0 - mean anomaly (rad)
ω - argument of perigee (rad)
Ω_o - longitude of the node at weekly epoch (rad)
Ω - drift of node's right ascension per second (rad/s)
\sqrt{a} - square root of semi major axis (m$^{1/2}$)
a - semi major axis
b - semi minor axis
ν - true anomaly
μ - WGS-84 value of the earth's universal gravitation constant (3.986005×10^{14} m3/sec2)
Ω_e - WGS-84 value of the earth's rotation rate ($7.2921151467 \times 10^{-5}$ rad/sec)
Δn - mean motion difference
i_o - inclination
$i,(IDOT)$ - rate of inclination angle
t_c - satellite clock reference epoch
Cic - amplitude of cosine correction to angle of inclination
Cis - amplitude of sine correction to angle of inclination
Crc - amplitude of cosine correction to orbit radius
Crs - amplitude of sine correction to orbit radius
Cuc - cosine correction term to the satellite argument of latitude
Cus - amplitude of sine correction to argument of latitude
Ω_r - Omega cross r term
x_i - satellite ECEF x coordinate system
y_i - satellite ECEF y coordinate system
z_i - satellite ECEF z coordinate system
x_u - user ECEF x coordinate
y_u - user ECEF y coordinate
z_u - user ECEF z coordinate
r_e - mean earth radius
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>Airports Authority of India</td>
</tr>
<tr>
<td>ARNC</td>
<td>Aeronautical Radio Navigation Service</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CAT I</td>
<td>Category I</td>
</tr>
<tr>
<td>C/A</td>
<td>Coarse Acquisition</td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CNS</td>
<td>Communication, Navigation and Surveillance</td>
</tr>
<tr>
<td>CONUS</td>
<td>Continental United States</td>
</tr>
<tr>
<td>COSPAR</td>
<td>Committee On Space Research</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSB</td>
<td>Carrier with Side Band</td>
</tr>
<tr>
<td>CWAAS</td>
<td>Canadian WAAS</td>
</tr>
<tr>
<td>DDM</td>
<td>Difference in Depth of Modulation</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOP</td>
<td>Dilution Of Precision</td>
</tr>
<tr>
<td>DVOR</td>
<td>Doppler Very High Frequency Omni Range</td>
</tr>
<tr>
<td>ECEF</td>
<td>Earth Centered Earth Fixed</td>
</tr>
<tr>
<td>ECI</td>
<td>Earth Centered Inertial</td>
</tr>
<tr>
<td>EIRP</td>
<td>Effective Isotropically Radiated Power</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FANS</td>
<td>Future Air Navigation System</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region</td>
</tr>
<tr>
<td>FIU</td>
<td>Flight Inspection Unit</td>
</tr>
<tr>
<td>FOP</td>
<td>Final Operational Phase</td>
</tr>
<tr>
<td>FPL</td>
<td>Flight Plan</td>
</tr>
<tr>
<td>GAGAN</td>
<td>GPS Aided Geo Augmented Navigation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GDOP</td>
<td>Geometric Dilution of Precision</td>
</tr>
<tr>
<td>GEOS</td>
<td>Geostationary Earth Orbit Satellite</td>
</tr>
<tr>
<td>GES</td>
<td>Ground Earth Station</td>
</tr>
<tr>
<td>GIVE</td>
<td>Grid Ionospheric Vertical Error</td>
</tr>
<tr>
<td>GIVEI</td>
<td>Grid Ionospheric Vertical Error Indicator</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HAL</td>
<td>Horizontal Alert Limit</td>
</tr>
<tr>
<td>HDOP</td>
<td>Horizontal Dilution Of Precision</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IDW</td>
<td>Inverse Distance weighted</td>
</tr>
<tr>
<td>IEP</td>
<td>Initial Experimental phase</td>
</tr>
<tr>
<td>IFB</td>
<td>Inter Frequency Bias</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>IGP</td>
<td>Ionospheric Grid Point</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>INLUS</td>
<td>Indian Navigation Land Uplink Station</td>
</tr>
<tr>
<td>INMMCC</td>
<td>Indian Mission control center</td>
</tr>
<tr>
<td>INRES</td>
<td>Indian Reference Station</td>
</tr>
<tr>
<td>INWAAS</td>
<td>Indian WAAS</td>
</tr>
<tr>
<td>IOD</td>
<td>Issuance of Data</td>
</tr>
<tr>
<td>IODC</td>
<td>Issuance of Data Clock</td>
</tr>
<tr>
<td>IODE</td>
<td>Issuance of Data Ephemeris</td>
</tr>
<tr>
<td>IODF</td>
<td>Issue of Data for Fast Corrections</td>
</tr>
<tr>
<td>IODI</td>
<td>Issuance of Data Ionosphere</td>
</tr>
<tr>
<td>IODP</td>
<td>Issuance of Data PRN</td>
</tr>
<tr>
<td>IOR</td>
<td>Indian Ocean Region</td>
</tr>
<tr>
<td>IPP</td>
<td>Ionospheric Pierce Point</td>
</tr>
<tr>
<td>IRI</td>
<td>International Reference Ionosphere</td>
</tr>
<tr>
<td>ISRO</td>
<td>Indian Space Research Organization</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>LT</td>
<td>Local Time</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MB</td>
<td>Magnetic Bearing</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Distance Altitude</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Squares Estimator</td>
</tr>
<tr>
<td>NAVSTAR</td>
<td>Navigation Satellite Timing And Ranging</td>
</tr>
<tr>
<td>NDB</td>
<td>Non Directional Beacon</td>
</tr>
<tr>
<td>NETRU</td>
<td>Research and Training Institute for Navigational Electronics</td>
</tr>
<tr>
<td>NGRI</td>
<td>National Geophysical Research Institute</td>
</tr>
<tr>
<td>NPA</td>
<td>Non-Precision Approach</td>
</tr>
<tr>
<td>PA</td>
<td>Precision Approach</td>
</tr>
<tr>
<td>P code</td>
<td>Precise code</td>
</tr>
<tr>
<td>PDOP</td>
<td>Position Dilution Of Precision</td>
</tr>
<tr>
<td>PPS</td>
<td>Precise Positioning Service</td>
</tr>
<tr>
<td>PR</td>
<td>Pseudorange</td>
</tr>
<tr>
<td>PRN</td>
<td>Pseudo Random Noise</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RINEX</td>
<td>Receiver Independent Exchange Format</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
<tr>
<td>RVR</td>
<td>Runway Visual Range</td>
</tr>
<tr>
<td>SA</td>
<td>Selective Availability</td>
</tr>
<tr>
<td>SACNS</td>
<td>Satellite Aided Communication, Navigation and Surveillance</td>
</tr>
<tr>
<td>SBAS</td>
<td>Satellite Based Augmentation System</td>
</tr>
<tr>
<td>SBO</td>
<td>Side Band Only</td>
</tr>
<tr>
<td>SF</td>
<td>Slant Factor</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SPS</td>
<td>Standard Positioning Service</td>
</tr>
<tr>
<td>SV</td>
<td>Satellite Vehicle</td>
</tr>
<tr>
<td>TDS</td>
<td>Technology Demonstration System</td>
</tr>
<tr>
<td>TEC</td>
<td>Total Electron Content</td>
</tr>
<tr>
<td>TECu</td>
<td>Total Electron Content unit</td>
</tr>
<tr>
<td>TOA</td>
<td>Time of Arrival</td>
</tr>
<tr>
<td>UIVE</td>
<td>User Ionospheric Vertical Error</td>
</tr>
<tr>
<td>URSI</td>
<td>International Union of Radio Science</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Coordinated Time</td>
</tr>
<tr>
<td>VDOP</td>
<td>Vertical Dilution Of Precision</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omni-Directional Range</td>
</tr>
<tr>
<td>VTECu</td>
<td>Vertical Total Electron Content unit</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geodetic System</td>
</tr>
</tbody>
</table>