Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>i – iii</td>
</tr>
<tr>
<td>List of tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>v – vi</td>
</tr>
<tr>
<td>List of accession numbers</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1-4</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Aims and objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Research hypothesis</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Thesis structure</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2: Review of Literature</td>
<td>5-46</td>
</tr>
<tr>
<td>2.1. Central dogma of molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1. RNA splicing</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2. Cis-splicing and Trans-splicing</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3. Alternative splicing (AS)</td>
<td>8</td>
</tr>
<tr>
<td>2.1.4. Types of alternative splicing</td>
<td>10</td>
</tr>
<tr>
<td>2.1.5. Prevalence of alternative splicing across organisms</td>
<td>11</td>
</tr>
<tr>
<td>2.1.6. Alternative transcription and its consequences on</td>
<td>12</td>
</tr>
<tr>
<td>alternative splicing</td>
<td></td>
</tr>
<tr>
<td>2.1.7. Methods to study alternative splicing</td>
<td>13</td>
</tr>
<tr>
<td>2.1.7.1. Microarray technology</td>
<td>13</td>
</tr>
<tr>
<td>2.1.7.2. Complementary DNA library screening</td>
<td>14</td>
</tr>
<tr>
<td>2.1.7.3. Immuno-precipitation (IP) and mass spectrometry (MS)</td>
<td>15</td>
</tr>
<tr>
<td>2.1.7.4. Rapid amplification of cDNA ends (RACE)</td>
<td>16</td>
</tr>
<tr>
<td>2.1.7.5. Computational prediction and annotation of</td>
<td>16</td>
</tr>
<tr>
<td>alternatively spliced variants</td>
<td></td>
</tr>
<tr>
<td>2.1.7.6. Combination of computational and molecular</td>
<td>17</td>
</tr>
<tr>
<td>biology techniques</td>
<td></td>
</tr>
<tr>
<td>2.1.8. Alternative promoters</td>
<td>17</td>
</tr>
<tr>
<td>2.2. Cancer</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1. Epidemiology</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2. Genetics</td>
<td>20</td>
</tr>
<tr>
<td>2.2.3. Epigenetics</td>
<td>21</td>
</tr>
<tr>
<td>2.2.4. "Drivers" of Cancer</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5. Types of Cancer</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5.1. Carcinoma</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5.2. Sarcoma</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5.3. Leukemia</td>
<td>23</td>
</tr>
<tr>
<td>2.2.5.4. Lymphoma</td>
<td>23</td>
</tr>
<tr>
<td>2.2.5.5. Multiple Myeloma</td>
<td>23</td>
</tr>
<tr>
<td>2.2.5.6. Melanoma</td>
<td>23</td>
</tr>
<tr>
<td>2.3. Alternative Splicing and Diseases</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1. Alternative Splicing and Cancer</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2. Alternative Splicing and Cancer: The Reciprocal effect</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3. Alternative splicing and invasion</td>
<td>27</td>
</tr>
<tr>
<td>2.3.4. Role of alternative splicing in cancer</td>
<td>27</td>
</tr>
</tbody>
</table>
2.3.5. Effect of splicing factors in cancer
2.3.6. Alternative Splicing and cancer treatment
2.3.7. Alternative splicing in cancer associated genes and modulation by anticancer drugs
 2.3.7.1. Bcl-x (Bcl-2 family protein)
 2.3.7.2. Caspase-9
 2.3.7.3. Apaf-1
 2.3.7.4. MDM2
2.3.8. Splice variants as cancer biomarkers
 2.3.8.1. CD44
 2.3.8.2. WT1
 2.3.8.3. BRCA1 and BRCA2
 2.3.8.4. PSA and the kallikrein gene family
 2.3.8.5. Fibroblast growth factor receptors
2.4. Application of bioinformatics tools and alternative splicing
 2.4.1. Predicting alternatively spliced exons using comparative genomics
 2.4.2. Alternative splicing through microarray studies
 2.4.3. Evolution of databases and tools for alternative splicing
 2.4.4. Gene/exon prediction using bioinformatics tools: Key Issues
2.5. Model organism of study: Mouse

Chapter 3: Materials and Methods

3.1. Part I: Computational methods
 3.1.1. Source of gene or sequence data set and transcript sequences
 3.1.2. Sequence formatting
 3.1.3. Sequence homology analysis by pair wise and multiple sequence alignment
 3.1.4. Gene and exon finding tools
 3.1.5. Alternative splicing database (ASD)
 3.1.6. Expressed sequence tag (EST) search and analysis
 3.1.7. Primer designing
 3.1.8. Promoter analysis
 3.1.9. Post translational modification predictions
 3.1.10 Secondary structure prediction
 3.1.11. Web addresses for bioinformatics tools
3.2. Part II: Materials
3.3. Part III: Wet Lab Experiments
 3.3.1. Ethical Statement for animal maintenance and experimentation
 3.3.2. Total RNA extraction
 3.3.3. Denaturing agarose gel electrophoresis
 3.3.4. Rapid amplification of cDNA ends (RACE)
 3.3.5. cDNA synthesis
 3.3.6. Primers
 3.3.7. Reverse Transcriptase-PCR (RT-PCR)
 3.3.8. Semi-nested PCR
 3.3.9. Agarose gel electrophoresis
 3.3.10. Purification of PCR products
 3.3.11. TOPO-TA cloning
 3.3.12. Preparation of nutrient media
3.3.13. Preparation of competent E.coli cells
3.3.14. Transformation of competent E.coli cells with plasmid DNA
3.3.15. Isolation of recombinant plasmid DNA
3.3.16. DNA sequencing
3.3.17. Quantitative real time PCR (qRT-PCR) analysis
3.3.18. Immunoblotting
 3.3.18.1. Preparation of protein lysates
 3.3.18.2. SDS PAGE
 3.3.18.3. Resolving Gel
 3.3.18.4. Stacking gel
 3.3.18.5. Electrophoresis
 3.3.18.6. Western blotting
 3.3.18.7. X-ray Film development

Chapter 4: Identification of novel transcript variants of Arnt

4.1. Introduction 69
4.2. Methods 70
 4.2.1. Computational prediction 70
 4.2.2. cDNA synthesis 71
 4.2.3. Primers 71
 4.2.4. Reverse Transcriptase PCR (RT-PCR) 71
 4.2.5. Semi-nested RT-PCR 71
 4.2.6. Quantitative real time PCR (qRT-PCR) analysis 72
4.3. Results and Discussion 73
 4.3.1. In silico analysis of new exons of Arnt gene 73
 4.3.2. Validation of novel alternatively spliced transcript variants of Arnt 74
 4.3.3. Expression of Arnt transcript isoforms in different mouse tissues 78
 4.3.4. Quantitative real time RT-PCR assay 79
 4.3.5. Expression of Arnt gene from three distinct promoter regions 80
 4.3.6. In silico analysis of the conceptually translated transcripts 82
 4.3.7. Novel Arnt splice variants and their possible relevance to diseases 86
4.4. Conclusion 87

Chapter 5: Identification of novel transcript variant of Stk11

5.1. Introduction 89
5.2. Methods 91
 5.2.1. Preparation of RNA from different tissues of mouse 91
 5.2.2. 5′ Rapid amplification of cDNA ends (5′ RACE) 91
 5.2.3. Reverse Transcriptase PCR (RT-PCR) 91
 5.2.4. Semi nested PCR 92
 5.2.5. Sub cloning and sequencing 92
 5.2.6. Sequence analysis using bioinformatics tools 92
5.3. Results and Discussion 93
Chapter 6: Identification of novel variants of MyD88

6.1. Introduction 104
6.2. Methods 106
 6.2.1. Computational prediction of novel exon 106
 6.2.2. cDNA synthesis by RT-PCR 106
 6.2.3. Touchdown RT-PCR 106
 6.2.4. Semi-Nested RT-PCR 107
 6.2.5. Subcloning and Sequencing 107
 6.2.6. Immunoblotting 107
 6.2.7. Computational analysis of the variants 108
6.3. Results and Discussion 108
 6.3.1. Computational prediction of new non-coding exon of MyD88 108
 6.3.2. Validation of the predicted transcript variants 110
 6.3.3. Differential expression of transcript isoforms across mouse tissues 113
 6.3.4. Novel protein isoform confirmation by western blot 114
 6.3.5. Expression of MyD88 gene from distinct promoter regions 115
 6.3.6. Comparative studies of deduced amino acid sequences encoded by transcript variants 118
 6.3.7. Functional relevance of the MYD88 isoforms 121
6.4. Conclusion 123

Chapter 7: Summary 124-131

References
List of publications and presentations
Reprints of publications