List of Figures

Fig.1. Major energy producing sectors and their relative percentage in energy production in India. 2
Fig.2. Generalised flow sheet for municipal wastewater treatment and use for irrigation. 48
Fig.3. The Badarpur thermal power station. 62
Fig.4. The fly ash pond. 62
Fig.5. Schematic diagram of fly ash pond of Badarpur Thermal Power Station. 63
Fig.6. Lay out diagram of Okhla Sewage Treatment Plant. 65
Fig.7. X-ray diffractogram of fly ash. 94
Fig.8. X-ray diffractogram of Mehrauli soil. 97
Fig.9. X-ray diffractogram of Badarpur soil 98
Fig.10a. Changes in pH, EC and copper with time during leaching experiment. 107
Fig.10b. Changes in iron, manganese and zinc concentration with time during leaching experiment. 108
Fig.11a. Periodic changes in the pH of the Mehrauli soil amended with fly ash and irrigated with water. 123
Fig.11b. Periodic changes in the pH of the Mehrauli soil amended with fly ash and irrigated with sewage effluent. 124
Fig.12a. Periodic changes in the pH of the Badarpur soil amended with fly ash and irrigated with water. 126
Fig.12b. Periodic changes in the pH of the Badarpur soil amended with fly ash and irrigated with sewage effluent. 127
Fig.13a. Periodic changes in the electrical conductivity of the Mehrauli soil amended with fly ash and irrigated with water. 130
Fig. 13b. Periodic changes in the electrical conductivity of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 14a. Periodic changes in the electrical conductivity of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 14b. Periodic changes in the electrical conductivity of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 15a. Periodic changes in the available nitrogen of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 15b. Periodic changes in the available nitrogen of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 16a. Periodic changes in the available nitrogen of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 16b. Periodic changes in the available nitrogen of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 17a. Periodic changes in the available phosphorus of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 17b. Periodic changes in the available phosphorus of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 18a. Periodic changes in the available phosphorus of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 18b. Periodic changes in the available phosphorus of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 19a. Periodic changes in the available potassium of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 19b. Periodic changes in the available potassium of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.
Fig. 20a. Periodic changes in the available potassium of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 20b. Periodic changes in the available potassium of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 21a. Periodic changes in the available copper of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 21b. Periodic changes in the available copper of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 22a. Periodic changes in the available copper of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 22b. Periodic changes in the available copper of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 23a. Periodic changes in the available iron of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 23b. Periodic changes in the available iron of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 24a. Periodic changes in the available iron of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 24b. Periodic changes in the available iron of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 25a. Periodic changes in the available manganese of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 25b. Periodic changes in the available manganese of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 26a. Periodic changes in the available manganese of the Badarpur soil amended with fly ash and irrigated with water.
Fig. 26b. Periodic changes in the available manganese of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 27a. Periodic changes in the available zinc of the Mehrauli soil amended with fly ash and irrigated with water.

Fig. 27b. Periodic changes in the available zinc of the Mehrauli soil amended with fly ash and irrigated with sewage effluent.

Fig. 28a. Periodic changes in the available zinc of the Badarpur soil amended with fly ash and irrigated with water.

Fig. 28b. Periodic changes in the available zinc of the Badarpur soil amended with fly ash and irrigated with sewage effluent.

Fig. 29a. Effect of fly ash and sewage effluent on the total yield of lettuce when grown on the Mehrauli soil.

Fig. 29b. Effect of fly ash and sewage effluent on the total yield of lettuce when grown on the Badarpur soil.

Fig. 30a. Effect of fly ash and sewage effluent on the total yield of maize when grown on the Mehrauli soil.

Fig. 30b. Effect of fly ash and sewage effluent on the total yield of maize when grown on the Badarpur soil.