LIST OF TABLES

Table 1: Consumption pattern of coal in India during 1988-89

Table 2: Summary of considerations for selected trace elements in fly ash

Table 3: Effects of fly ash on agricultural crops

Table 4: Some physico-chemical characteristics of soils and fly ash used for the experiment

Table 5: Clay minerals and amorphous aluminosilicate minerals identified from X-ray diffraction data

Table 6: Physico-chemical characteristics of secondary treated sewage effluents collected from Okhla Sewage Treatment Plant

Table 7: Effect of digestion procedure on the total metal concentration in soil and fly ash

Table 8a: Effect of sluicing water pH and time on the pH and Electrical conductivity of the fly ash leachates

Table 8b: Effect of sluicing water pH and leaching time on the metal concentration in the fly ash leachates

Table 9: Correlation coefficient between pH of extractant and elemental concentration in the solution.

Table 10: Solubility products of metal hydroxides at 18°C.

Table 11a: Initial changes in some physico-chemical characteristics of soils due to fly ash amendment

Table 11b: Effect of fly ash amendment to soils on the initial availability of metals (concentration of metals in ppm)

Table 12: Periodic changes in the pH of the Mehrauli soil amended with fly ash during an incubation experiment
Table 13: Periodic changes in the pH of the Badarpur soil amended with fly ash during an incubation experiment

Table 14: Periodic changes in the electrical conductivity (μmhos/cm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 15: Periodic changes in the electrical conductivity (μmhos/cm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 16: Periodic changes in the organic carbon (%) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 17: Periodic changes in the organic carbon (%) of the Badarpur soil amended with fly ash during an incubation experiment

Table 18: Periodic changes in the available nitrogen (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 19: Periodic changes in the available nitrogen (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 20: Periodic changes in the available phosphorus (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 21: Periodic changes in the available phosphorus (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 22: Periodic changes in the available potassium (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 23: Periodic changes in the available potassium (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 24: Periodic changes in the available copper concentration (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment
Table 25: Periodic changes in the available copper concentration (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 26: Periodic changes in the available iron concentration (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 27: Periodic changes in the available iron concentration (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 28: Periodic changes in the available manganese concentration (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 29: Periodic changes in the available manganese concentration (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 30: Periodic changes in the available zinc concentration (ppm) of the Mehrauli soil amended with fly ash during an incubation experiment

Table 31: Periodic changes in the available zinc concentration (ppm) of the Badarpur soil amended with fly ash during an incubation experiment

Table 32: Effect of fly ash on the total yield (dry weight in grams) of lettuce and corn when grown on the Mehrauli soil

Table 33: Effect of fly ash on the total yield (dry weight in grams) of lettuce and corn when grown on the Badarpur soil

Table 34: Effect of fly ash on yield of shoot and root of plants when grown on the Mehrauli Soil

Table 35: Effect of fly ash on yield of shoot and root of plants when grown on the Badarpur soil

Table 36: Uptake and accumulation of nitrogen, phosphorus and potassium (% of dry wt.) by
shoot and root of lettuce plant grown on fly ash amended Mehrauli soil.

Table 37: Uptake and accumulation of nitrogen, phosphorus and potassium (% of dry wt.) by shoot and root of lettuce plant grown on fly ash amended Badarpur soil.

Table 38: Uptake and accumulation of nitrogen, phosphorus and potassium (% of dry wt.) by shoot and root of maize plant grown on fly ash amended Mehrauli soil.

Table 39: Uptake and accumulation of nitrogen, phosphorus and potassium (% of dry wt.) by shoot and root of maize plant grown on fly ash amended Badarpur soil.

Table 40: Uptake and accumulation of Cu, Fe, Mn and Zn by shoot and root of lettuce grown on fly ash amended soil of Mehrauli (ppm)

Table 41: Uptake and accumulation of Cu, Fe, Mn and Zn by shoot and root of lettuce grown on fly ash amended soil of Badarpur (ppm)

Table 42: Uptake and accumulation of Cu, Fe, Mn and Zn by shoot and root of maize grown on fly ash amended soil of Mehrauli

Table 43: Uptake and accumulation of Cu, Fe, Mn and Zn by shoot and root of maize grown on fly ash amended soil of Badarpur