INDEX

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
</tr>
<tr>
<td>List of Charts / figures</td>
<td></td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1. GENERAL 01

1.2. PILE FOUNDATIONS

1.2.1. STRAIGHT SHAFTED PILE 03

1.2.2. UNDER-REAMED PILE 03

1.3. LOAD CARRYING CAPACITY OF PILE FOUNDATION 03

1.3.1. PLASTIC APPROACH 03

1.3.2. ANALYSIS BASED ON ELASTIC THEORY 04

1.4. OBJECTIVE AND SCOPE OF THE WORK

1.4.1. OBJECTIVE OF THE WORK 05

1.4.2. SCOPE OF THE WORK 05

1.5. ORGANISATION OF THE THESIS 06

2. REVIEW OF LITERATURE

2.1. GENERAL 07

2.2. FAILURES IN STRUCTURES 09

2.3. IDENTIFICATION OF EXPANSIVE SOILS 10

2.3.1. IDENTIFICATION BASED ON INDEX PROPERTIES 11

2.3.2. IDENTIFICATION BASED ON SWELLING CHARACTERISTICS 13

2.4. EXISTING FOUNDATION PRACTICES IN EXPANSIVE SOILS 14

2.4.1. AVOID EXPANSIVE MATERIAL 14
2.4.2. CHANGING THE NATURE OF THE EXPANSIVE SOIL

2.4.2.1. COMPACTION

2.4.2.2. PREWETTING

2.4.3. ALTERATION OF PROPERTIES

2.4.3.1. MECHANICAL ALTERATION

2.4.3.2. PHYSICAL ALTERATION

2.4.3.3. CHEMICAL ALTERATION

2.4.4. REINFORCED SOIL COLUMNS

2.4.4.1. LIME SOIL COLUMNS

2.4.5. ADOPTING SPECIAL CONSTRUCTION PRACTICES – DESIGNING UNDAMAGED STRUCTURES DESPITE SWELLING

2.4.5.1. RIGID CONSTRUCTION

2.4.5.2. FLEXIBLE CONSTRUCTION

2.4.5.3. PAD FOUNDATIONS

2.4.5.4. FRICTION PIERS

2.4.6. ISOLATING STRUCTURES FROM SWELLING SOIL

2.4.6.1. DRILLED PIERS

2.4.6.2. BELLED PIERS

2.4.6.3. GRANULAR PILE ANCHORS

2.4.7. PILE FOUNDATIONS

2.4.7.1. METHODS OF ANALYSIS OF PILE FOUNDATIONS

2.4.8. CONVENTIONAL PLASTIC EQUILIBRIUM ANALYSIS

2.4.8.1. STATIC FORMULA

2.4.9. ELASTIC ANALYSIS

2.4.9.1. ELASTIC APPROACH FOR PILES IN INEXPANSIVE CLAYS

ELASTIC APPROACH FOR PILES IN EXPANSIVE SOILS

2.4.10. UNDER-REAMED PILES
2.4.10.1 LOAD CARRYING CAPACITY OF UNDER-REAMED PILES

2.4.10.2 LOAD CARRYING CAPACITY OF MULTI-UNDER REAMED PILES

3. METHODOLOGY

3.1 GENERAL

3.2 ASSUMPTIONS

3.3 STRAIGHT SHAFTED PILE

3.3.1 ANALYSIS OF SINGLE PILE

3.3.1.1 DISPLACEMENT OF SOIL

3.3.1.1.1 SOIL DISPLACEMENT DUE TO THE APPLIED LOAD ON THE PILE

3.3.1.1.2 SOIL DISPLACEMENT DUE TO ITS OWN EXISTENCE, BY IMBIBING WATER

3.3.1.2 DISPLACEMENT OF PILE

3.3.2 ANALYSIS OF A GROUP OF PILES

3.4 PILES WITH ENLARGED BASES

3.4.1 ANALYSIS OF SINGLE PILE

3.4.2 ANALYSIS OF PILE GROUPS

3.5 PILES IN INHOMOGENEOUS SOILS

3.6 GENERAL CONSIDERATIONS FOR SELECTION OF VALUE OF PARAMETERS

4. RESULTS AND DISCUSSIONS- STRAIGHT SHAFTED PILES IN HOMOGENEOUS SOILS

4.1 INTRODUCTION

4.2 DISTRIBUTION OF FORCES WITH DEPTH

4.2.1 SINGLE PILE ANALYSIS

4.2.2 ANALYSIS OF PILE GROUPS

4.2.2.1 EFFECT OF PILE LENGTH
7 SUMMARY AND CONCLUSIONS

7.1 INTRODUCTION 112
7.2 SUMMARY 112
7.3 CONCLUSIONS 113

7.3.1 STRAIGHT-SHAFTED PILES IN HOMOGENEOUS SOILS 113

7.3.1.1 DISTRIBUTION OF FORCES IN SINGLE PILE 113
7.3.1.2 DISTRIBUTION OF FORCES IN PILE GROUPS 113
7.3.1.3 MAXIMUM PILE LOAD 114

7.3.2 UNDER-REAMED PILES IN HOMOGENEOUS SOILS 115

7.3.2.1 MAXIMUM PILE LOAD IN SINGLE PILE 115
7.3.2.2 MAXIMUM PILE LOAD IN GROUPS 115

7.3.3 STRAIGHT-SHAFTED PILES IN NON-HOMOGENEOUS SOILS 116

7.3.3.1 DISTRIBUTION OF FORCES IN SINGLE PILE 116
7.3.3.2 DISTRIBUTION OF FORCES IN PILE GROUPS 116
7.3.3.3 MAXIMUM PILE LOAD 116

LIMITATION OF ELASTIC APPROACH 117

REFERENCES 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>DEGREE OF EXPANSION BASED IN FREE SWELL INDEX</td>
</tr>
<tr>
<td>4.1</td>
<td>EFFECT OF NUMBER OF PILES AND SPACING ON PILE LOAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIG. NO</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>MOUND SHAPED HEAVE</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>STRAIGHT-SHAFTED PILE</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>UNDER REAMED PILE</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>PLASTICITY CHART</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>SAND CUSHION METHOD</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>COHESIVE NON-SWELLING LAYER METHOD</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>STIFFENED MAT</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>WAFFLE SLAB</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>BOUCEL RAFT</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>STUDED BRICK FOUNDATION</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>DRILLED PIERS</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>BELLED PIERS</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>GRANULAR PILE ANCHORS</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>LOAD-CARRYING CAPACITY OF PILE FOUNDATION</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>CRITICAL DEPTH</td>
<td>31</td>
</tr>
<tr>
<td>2.13</td>
<td>UNDER-REAMED PILES</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>SINGLE PILE</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>INTEGRATION OF MINDLIN'S EQUATIONS FOR PILE SETTLEMENT</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>GEOMETRY FOR INTEGRATION OVER CIRCULAR AREA</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>MIRROR IMAGE TECHNIQUE</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF CHARTS

<table>
<thead>
<tr>
<th>Fig. No</th>
<th>Title of the Chart</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Depth-wise variation of P/P_{1s} for a single-straight-shafted Pile.</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Depth-wise variation of P/P_{1s} for 2-pile group of straight-shafted Piles. ($Z_s/L=0.2, K=1000, v=0.30, s/d=3.0$)</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Depth-wise variation of P/P_{1s} for 3-pile group of straight-shafted Piles. ($Z_s/L=0.2, K=1000, v=0.30, s/d=3.0$)</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Depth-wise variation of P/P_{1s} for 4-pile group of straight-shafted Piles. ($Z_s/L=0.2, K=1000, v=0.30, s/d=3.0$)</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Depth-wise variation of P/P_{1s} for Piles in different groups ($L/d=30, K=1000, v=0.3, s/d=3.0, Z_s/L=0.6$)</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Depth-wise variation of P/P_{1s} for 2-pile group of straight-shafted Piles, for different s/d ratio.</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Depth-wise variation of P/P_{1s} for 3-pile group of straight-shafted Piles, for different s/d ratio.</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Depth-wise variation of P/P_{1s} for 4-pile group of straight-shafted Piles, for different s/d ratio.</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of Poisson’s ratio on $P_{max}/E_{c}d_{S_o}$ for single straight-shafted Pile</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>Variation of $P_{max}/E_{c}d_{S_o}$ with Pile stiffness factor 'K' for straight-shafted Single Pile. ($Z_s/L=0.2, v=0.3, L/d=10,20,30,40,50$)</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of $P_{max}/E_{c}d_{S_o}$ with Pile stiffness factor 'K' for straight-shafted Single Pile. ($Z_s/L=0.6, v=0.3, L/d=10,20,30,40,50$)</td>
<td>81</td>
</tr>
<tr>
<td>4.12</td>
<td>Variation of $P_{max}/E_{c}d_{S_o}$ for straight-shafted 2-Pile group. ($Z_s/L=0.2, v=0.3, K=1000$)</td>
<td>82</td>
</tr>
<tr>
<td>4.13</td>
<td>Variation of $P_{max}/E_{c}d_{S_o}$ for straight-shafted 3-Pile group. ($Z_s/L=0.2, v=0.3, K=1000$)</td>
<td>83</td>
</tr>
<tr>
<td>4.14</td>
<td>Variation of $P_{max}/E_{c}d_{S_o}$ for straight-shafted 4-Pile group. ($Z_s/L=0.2, v=0.3, K=1000$)</td>
<td>84</td>
</tr>
</tbody>
</table>
4.15 Variation of \(P_{\text{max}}/E_d dS_o \) for straight-shafted 2-Pile group.
\((Z_s/L=0.6, v=0.3, K =1000)\)

4.16 Variation of \(P_{\text{max}}/E_d dS_o \) for straight-shafted 3-Pile group.
\((Z_s/L=0.6, v=0.3, K =1000)\)

4.17 Variation of \(P_{\text{max}}/E_d dS_o \) for straight-shafted 4-Pile group.
\((Z_s/L=0.6, v=0.3, K =1000)\)

5.1 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for single pile with enlarged base.
\((Z_s/L=0.6, v=0.3, K =1000)\)

5.2 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 2-pile with enlarged base.
\((Z_s/L=0.6, s/d_b =4v=0.3, K =1000)\)

5.3 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 3-pile with enlarged base.
\((Z_s/L=0.6, s/d_b =4v=0.3, K =1000)\)

5.4 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 4-pile with enlarged base.
\((Z_s/L=0.6, s/d_b =4v=0.3, K =1000)\)

5.5 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for different \('K' \) in a single pile with enlarged base.
\((Z_s/L=0.6, v=0.3, d_b/d=3, K=100, 1000, 10000)\)

5.6 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 2-pile group for different \((Z_s/L=0.6, s/d_b =3.0, d_b/d=3, K=100, 1000, 10000)\)

5.7 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 3-pile group for different \((Z_s/L=0.6, s/d_b =3.0, d_b/d=3, K=100, 1000, 10000)\)

5.8 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 4-pile group for different \((Z_s/L=0.6, s/d_b =3.0, d_b/d=3, K=100, 1000, 10000)\)

5.9 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 2-pile group for different \(s/d_b \) ratio with enlarged bases.\((Z_s/L=0.6, K=1000, v=0.3)\)

5.10 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 3-pile group for different \(s/d_b \) ratio with enlarged bases.\((Z_s/L=0.6, K=1000, v=0.3)\)

5.11 Variation of \(P_{\text{max}}/E_d dS_o \) with \(L/d \) for 4-pile group for different \(s/d_b \) ratio with enlarged bases.\((Z_s/L=0.6, K=1000, v=0.3)\)
5.12 Variation of \(P_{\text{max}}/E_d S_o \) with L/d for different group of pile
\((Zs/L=0.6, K=1000, v=0.3, d_b=3.0, s/d_b =4)\)

6.1 Depth-wise variation of \(P/P_{1s} \) for a single straight-shafted pile
(variable \('E' \), \(K=1000, v=0.30, s/d=3.0, \)
\(Zs/L=0.6, L/d=10,20,30,40,50 \)\)

6.2 Depth-wise variation of \(P/P_{1s} \) for a 2-pile group of straight-shafted piles (variable \('E' \), \(K=1000, v=0.30, s/d=3.0, \)
\(Zs/L=0.6, L/d=10,20,30,40,50 \)\)

6.3 Depth-wise variation of \(P/P_{1s} \) for a 3-pile group of straight-shafted piles (variable \('E' \), \(K=1000, v=0.30, s/d=3.0, \)
\(Zs/L=0.6, L/d=10,20,30,40,50 \)\)

6.4 Depth-wise variation of \(P/P_{1s} \) for a 4-pile group of straight-shafted piles (variable \('E' \) \(K=1000, v=0.30, s/d=3.0, \)
\(Zs/L=0.6, L/d=10,20,30,40,50 \)\)

6.5 Depth-wise variation of \(P/P_{1s} \) for piles in different groups (variable \('E' \) \(K=1000, v=0.30, s/d=3.0, L/d=30 \)\)

6.6 Depth-wise variation of \(P/P_{1s} \) for a 2-pile group of straight-shafted piles ,for different s/d ratios (variable \(E' \),\(K=1000, v=0.30, L/d=30 \)\)

6.7 Depth-wise variation of \(P/P_{1s} \) for a 3-pile group of straight-shafted piles ,for different s/d ratios (variable \('E' \) \(K=1000, v=0.30, L/d=30 \)\)

6.8 Depth-wise variation of \(P/P_{1s} \) for a 4 - pile group of straight-shafted piles ,for different s/d ratios (variable \('E' \) \(K=1000, v=0.30, L/d=30 \)\)

6.9 Variation of \(P_{\text{max}}/E_d S_o \) for a group of 2 straight-shafted piles
\((K=1000, v=0.30, Zs/L=0.2,)\)

6.10 Variation of \(P_{\text{max}}/E_d S_o \) for a group of 3 straight-shafted piles
\((K=1000, v=0.30, Zs/L=0.2,)\)

6.11 Variation of \(P_{\text{max}}/E_d S_o \) for a group of 4 straight-shafted piles
\((K=1000, v=0.30, Zs/L=0.2,)\)
6.12 Variation of $P_{max}/E\Delta S_0$ for a group of 2 straight-shafted piles
(K=1000, v=0.30, Zs/L=0.6)

6.13 Variation of $P_{max}/E\Delta S_0$ for a group of 3 straight-shafted piles
(K=1000, v=0.30, Zs/L=0.6)

6.14 Variation of $P_{max}/E\Delta S_0$ for a group of 4 straight-shafted piles
(K=1000, v=0.30, Zs/L=0.6)