NOMENCLATURE AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC/ac</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>ASD</td>
<td>Adjustable Speed Drive</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>CM</td>
<td>Common Mode</td>
</tr>
<tr>
<td>C_{snub}</td>
<td>Snubber capacitance</td>
</tr>
<tr>
<td>CT</td>
<td>Current transformer</td>
</tr>
<tr>
<td>d</td>
<td>Direct axis</td>
</tr>
<tr>
<td>DC/dc</td>
<td>Direct Current</td>
</tr>
<tr>
<td>dBμV</td>
<td>$20\log_{10}\mu$V (Decibel Micro-volts)</td>
</tr>
<tr>
<td>dBV</td>
<td>$20\log_{10}$V (Decibel volts)</td>
</tr>
<tr>
<td>d^c-q^c</td>
<td>Rotating reference frame variables(2 phase)</td>
</tr>
<tr>
<td>DM</td>
<td>Differential Mode</td>
</tr>
<tr>
<td>DSO</td>
<td>Digital storage oscilloscope</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital signal processing</td>
</tr>
<tr>
<td>d^s-q^s</td>
<td>Stationary reference frame variables(2-phase)</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EUT</td>
<td>Equipment Under Test</td>
</tr>
<tr>
<td>f_0</td>
<td>Fundamental output frequency</td>
</tr>
</tbody>
</table>
Fig
Figure

gnd
Ground

I_c
Common mode current

I_D
Differential mode current

IGBT
Insulated Gate Bipolar Transistor

IM
Induction Motor

I_m
Peak fundamental inverter load current

I_out
Fundamental inverter output current

i_{sa}(t), i_{sb}(t)
Real and imaginary components of the current

i_s(t)
Stator current space vector for 3 phase motor

i_{sa}(t), i_{sb}(t), i_{sc}(t)
Three phase stator currents of Induction motor

L-C
Inductive-Capacitive

LISN
Line Impedance Stabilization Network

L_i, L_L
Load inductance

mmf
Magneto motive force

MOSFET
Metal-Oxide-Semiconductor Field Effect Transistor

MSO
Mixed Signal oscilloscope

n
Number of inverter phases / poles

NPC
Neutral point clamped

Ns
Number of turns per phase

P_{cond}
Inverter conduction loss

PIC
Peripheral interface controller
\(P_{\text{out}} \)
Power output of inverter

PWM
Pulse Width Modulation

\(q \)
Quadreture axis

R-C
Resistive-Capacitive

RF
Radio Frequency

\(R_L \)
Load resistance

SPWM
Sinusoidal Pulse Width Modulation

SVM
Space vector modulation

\(t \)
Time variable

\(T_0, T_1, T_2 \)
Time duration for inverter vector forming a triangular sector during the sampling interval

\(t_d \)
Dead time delay

THD
Total harmonic distortion

\(T_s \)
Sampling interval

\(V_{AN}, V_{BN}, V_{CN} \)
Motor phase to neutral voltage

\(V_{AO}, V_{BO}, V_{CO} \)
Inverter pole voltages (2-level)

\(V_{cm} \)
Common mode voltage applied to the load

\(V_{dc} \)
DC bus voltage

\(V_{\text{fwd}} \)
Device forward voltage drop

\(V_{\text{il}} \)
Inverter input line voltage

\(V_m \)
Peak fundamental output voltage of inverter

\(V_M \)
Pole voltage for poly phase inverter

\(V_{\text{out}} \)
Fundamental inverter output voltage
VSI
Voltage Source Inverter

\(v_\alpha(t), v_\beta(t) \)
Real and imaginary components of the voltage

%
Percentage

\(\omega_0 \)
Fundamental output angular frequency

\(\alpha \)
Alpha (real axis)

\(\beta \)
Beta (perpendicular to real axis)

\(\Theta \)
Angle of advance

\(\Phi \)
Power factor angle

<table>
<thead>
<tr>
<th>Regulatory Bodies</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEF</td>
<td>Active Common Mode EMI Filter</td>
</tr>
<tr>
<td>CISPR</td>
<td>International Special Committee on Radio</td>
</tr>
<tr>
<td></td>
<td>Interference</td>
</tr>
<tr>
<td>CE102</td>
<td>Conducted Emissions Requirement 102 of</td>
</tr>
<tr>
<td></td>
<td>MIL=STD-461D</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications commission</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electro technical Commission</td>
</tr>
<tr>
<td>PFC</td>
<td>Power Factor Correctors</td>
</tr>
<tr>
<td>VDE</td>
<td>Verband Deutscher Elektrotechniker</td>
</tr>
</tbody>
</table>