CONTENTS

<table>
<thead>
<tr>
<th>Aim and Scope of the Investigation</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER-1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction to Viral Infection and Disease</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Classification of Viruses</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Pathogenesis of HIV Related Disease</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Virus Structure</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Viral Replication</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1 Replicative Cycle</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Overview of Antiviral Therapy</td>
<td>9</td>
</tr>
<tr>
<td>1.7 FDA Regulation of Oral Controlled Release Drugs</td>
<td>10</td>
</tr>
<tr>
<td>1.8 Beneficial Characteristics of Controlled Drug Delivery System</td>
<td>11</td>
</tr>
<tr>
<td>1.9 Drawbacks of Conventional Antiretroviral Drugs</td>
<td>12</td>
</tr>
<tr>
<td>1.10 Rationale for Controlled Drug Delivery of Anti Retroviral Drugs</td>
<td>13</td>
</tr>
<tr>
<td>1.11 Gastroretentive Drug Delivery Systems (GRDDS)</td>
<td>15</td>
</tr>
<tr>
<td>1.12 Suitable Drug Candidates for Gastroretention</td>
<td>15</td>
</tr>
<tr>
<td>1.13 Factors Controlling Gastric Retention of Dosage Forms</td>
<td>15</td>
</tr>
<tr>
<td>1.14 Literature Review on Drugs in the Present Study</td>
<td>16</td>
</tr>
<tr>
<td>1.14.1 Literature Review of Stavudine</td>
<td>16</td>
</tr>
<tr>
<td>1.14.2 Literature Review of Lamivudine</td>
<td>16</td>
</tr>
<tr>
<td>1.14.3 Literature Review of Lopinavir and Ritonavir</td>
<td>17</td>
</tr>
<tr>
<td>1.14.4 Literature Review of Valganciclovir</td>
<td>18</td>
</tr>
<tr>
<td>1.15 Literature Review on Polymers Used in the Present Study</td>
<td>18</td>
</tr>
<tr>
<td>1.16 Literature Review on Analytical Methods</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER-2</td>
<td></td>
</tr>
<tr>
<td>DRUG AND POLYMER PROFILES</td>
<td></td>
</tr>
<tr>
<td>2.1 Drug Profiles</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1 Drug Profile of Stavudine</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2 Drug Profile of Lamivudine</td>
<td>25</td>
</tr>
<tr>
<td>2.1.3 Drug Profile of Ritonavir</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4 Drug Profile of Lopinavir</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5 Drug Profile of Valganciclovir</td>
<td>34</td>
</tr>
</tbody>
</table>
2.2 Polymer Profiles
2.2.1 Polymer Profile of Gelucire 43/01
2.2.2 Polymer Profile of Compritol 888 ATO
2.2.3 Polymer Profile of Precirol ATO 5
2.2.4 Polymer Profile of Lubritab
2.2.5 Polymer Profile of Cremophore EL
2.2.6 Polymer Profile of Carnauba Wax
2.2.7 Polymer Profile of Geleol Pastilles
2.2.8 Polymer Profile of Myrj 52
2.2.9 Polymer Profile of Sedefos
2.2.10 Polymer Profile of Carbowax
2.2.11 Polymer Profile of Polymethacrylates
2.2.12 Polymer Profile of Hydroxy Propyl Methyl Cellulose
2.2.13 Polymer Profile Of Polyethylene Glycols
2.2.14 Polymer Profile of Carbopol 934
2.2.15 Polymer Profile of Sodium Alginate
2.2.16 Polymer Profile of Magnesium Stearate
2.2.17 Polymer Profile of Microcrystalline Cellulose

CHAPTER 3
MATERIALS AND METHODS
3.1 Materials
3.1.1 Drugs Used in the Current study
3.1.2 Excipients and Chemicals Used in the Current Study
3.1.3 Equipments Used in the Current Study
3.2 Dosage Forms Selected in the Current Study
3.3 General Methods for the Preparation and Characterization of Multiunit, Single unit GRFDDS and Bilayered Tablets
3.3.1 Preparation of Multi Unit GFDDS By Wet Granulation Technique
3.3.2 Preparation of Multi Unit GFDDS By Melt Granulation Technique
3.3.3 Preparation of Single Unit GRFDDS
3.3.4 Direct Compression Procedure for the Preparation of Controlled Release Layer of Bilayered Tablet
3.3.5 Wet Granulation Procedure for the Preparation of Gastric layer of Bilayered Tablet 74
3.3.6 Solubility Determination of Drugs 75
3.3.7 Construction of Standard Calibration Curves 75
3.3.8 Fourier Transforms Infrared Radiation (FT-IR) Studies 76
3.3.9 Differential Scanning Calorimetry (DSC) Studies 76
3.3.10 Drug Content Estimation 76
3.3.11 Moisture Uptake Studies 77
3.3.12 Hardness, Weight Variation And Friability Determination 77
3.3.13 *in vitro* Dissolution Studies 77
3.3.14 *in vitro* Buoyancy Studies 78
3.3.15 Accelerated Stability Studies on the Optimized Formulations 78
3.3.16 Kinetic Analysis of Dissolution Data 78
3.3.17 Statistical Comparison of Dissolution Profiles 81
3.3.18 Scanning Electron Microscopy (SEM) Studies 82

CHAPTER 4

FORMULATION AND EVALUATION OF GASTRORETENTIVE FLOATING DOSAGE FORMS OF STAVUDINE

4.1 Pre Formulation Studies 83
4.1.1 Determination of Stavudine Solubility 83
4.1.2 Construction of Standard Calibration Curve for Stavudine 83
4.1.3 Multimedia Dissolution of Stavudine Marketed Formulations 83
4.1.4 Fourier Transforms Infrared Radiation (FT-IR) Studies 83
4.1.5 Differential Scanning Calorimetry (DSC) Studies 83
4.1.6 Analytical Methods 84
4.2 Formulation of Stavudine Non-effervescent Gastroretentive Multi Unit and Single Unit Formulations 84
4.2.1 Characterization of the Designed Multi Unit GRFDDS 85
4.2.2 Moisture uptake studies of Melt granules 88
4.2.3 Preparation of Stavudine Multi Unit GFDDS 88
4.2.4 Preparation of Stavudine Single Unit GFDDS 90
4.2.5 in vitro Buoyancy Studies 90
4.2.6 in vitro Drug Release Studies 90
4.2.7 Kinetic Analysis of Release Data 91
4.2.8 Statistical Comparison of Dissolution Profiles 91
4.2.9 Compatibility Studies by IR and DSC 91
4.2.10 Ageing Studies by SEM and DSC 92
4.2.11 Accelerated stability studies on the prepared formulations 93

4.3 Results and Discussion 93
4.3.1 Stavudine Solubility Determination 93
4.3.2 Construction of Standard Calibration curve for Stavudine 94
4.3.3 Multimedia Dissolution of Stavudine Marketed Formulations. 95
4.3.4 Fourier Transforms Infrared Radiation measurement (FT-IR) of Pure Stavudine Drug 96
4.3.5 DSC Studies of Pure Stavudine Drug 97
4.3.6 Analytical methods 97
4.3.7 Stavudine Multiunit GRFDDS 98
4.3.8 Optimization of Formulations 104
4.3.9 Drug Release Kinetics 110
4.3.10 Drug-Polymer Compatibility Studies by IR and DSC 117
4.3.11 Ageing Studies 122
4.3.12 Moisture Uptake Study of Melt Granules 125
4.3.13 Accelerated Stability Studies of Stavudine Multi Unit GRFDDS (F-7) 127

CHAPTER-5
FORMULATION AND EVALUATION OF LAMIVUDINE NON-EFFERVESCENT GASTRORETENTIVE DOAGE FORMS EMPLOYING NOVEL LIPOIDAL CARRIERS
5.1 Pre Formulation Studies 129
5.1.1 Determination of Lamivudine Solubility 129
5.1.2 Construction of Standard Calibration Curve for Lamivudine 129
5.1.3 Multimedia Dissolution of Lamivudine Marketed Formulations 129
5.1.4 Fourier Transforms Infrared Radiation (FT-IR) Studies 129
5.1.5 Differential Scanning Calorimetry (DSC) Studies 129
5.1.6 Analytical Methods 130
5.1.7 Scanning Electron Microscopy Studies 130
5.2 Formulation of Lamivudine GRFDDS 130
5.2.1 Characterization of the Designed Formulations 130
5.2.2 Moisture Uptake Studies of Lamivudine GRF Formulations 131
5.2.3 Preparation of Lamivudine Multi Unit GRFDDS 131
5.2.4 Preparation of Lamivudine Single Unit GRFDDS 132
5.2.5 in vitro Buoyancy Studies 132
5.2.6 in vitro Drug Release Studies 132
5.2.7 Kinetic Analysis of Release Data 133
5.2.8 Statistical Comparison of Dissolution Profiles 134
5.2.9 Compatibility Studies by IR and DSC 134
5.2.10 Accelerated stability studies on the prepared formulations 135
5.2.11 Scanning Electron Microscopy Studies 135
5.3 Results and Discussions 135
5.3.1 Lamivudine Solubility Determination 135
5.3.2 Construction of Standard Calibration curve for Lamivudine 136
5.3.3 Multimedia Dissolution of Lamivudine Marketed Formulations. 137
5.3.4 Fourier Transforms Infrared Radiation measurement (FT-IR) of Pure Lamivudine Drug 139
5.3.5 DSC Studies of Pure Lamivudine Drug 139
5.3.6 Analytical methods 140
5.3.7 Formulation of Lamivudine Multi unit GRFDDS 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.8</td>
<td>Formulation of Lamivudine Single unit GRFDDS</td>
<td>143</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Optimization of Formulations</td>
<td>151</td>
</tr>
<tr>
<td>5.3.10</td>
<td>Drug Release Kinetics</td>
<td>153</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Drug-Polymer Compatibility Studies by IR and DSC</td>
<td>162</td>
</tr>
<tr>
<td>5.3.12</td>
<td>Moisture Uptake Study of Melt Granules</td>
<td>166</td>
</tr>
<tr>
<td>5.3.13</td>
<td>Accelerated Stability Studies of Lamivudine Multi Unit GRFDDS</td>
<td>167</td>
</tr>
<tr>
<td>5.3.14</td>
<td>SEM Studies of Optimized Lamivudine Multi unit Formulations</td>
<td>168</td>
</tr>
</tbody>
</table>

CHAPTER 6

GASTROSELECTIVE RETENTION AND EVALUATION OF HYDRODYNAMICALLY BALANCED MULTI UNIT FLOATING DOSAGE FORMS OF LOPINAVIR AND RITONAVIR

6.1 Pre Formulation Studies
6.1.1 Determination of Lopinavir Solubility
6.1.2 Determination of Ritonavir Solubility
6.1.3 Construction of Standard Calibration Curve for Lopinavir and Ritonavir
6.1.4 Multimedia Dissolution of Lopinavir and Ritonavir Marketed Formulations
6.1.5 Fourier Transforms Infrared Radiation (FT-IR) Studies of Lopinavir and Ritonavir Pure Drugs
6.1.6 Differential Scanning Calorimetry (DSC) Studies
6.1.7 Analytical Methods For Simultaneous Estimation of Lopinavir and Ritonavir
6.1.8 Scanning Electron Microscopy Studies
6.2 Formulation and Evaluation of Lopinavir and Ritonavir Noneffervescent Gastroretentive GRFDDS
6.2.1 Characterization of the Designed Multi Unit GRFDDS
6.2.2 Moisture uptake studies of Melt granules
6.2.3 Formulation of Lopinavir and Ritonavir Multi Unit GRFDDS
6.2.4 *in vitro* Buoyancy Studies
6.2.5 *in vitro* Drug Release Studies
6.2.6 Kinetic Analysis of Release Data 175
6.2.7 Statistical Comparison of Dissolution Profiles 175
6.2.8 Accelerated Stability Studies On The Prepared Formulations 175
6.2.9 Scanning Electron Microscopy Studies 176

6.3 Results and Discussions 176
6.3.1 Lopinavir Solubility Determination 176
6.3.2 Ritonavir Solubility Determination 177
6.3.3 HPLC Method for Construction of standard calibration curve for Lopinavir and Ritonavir Multimedia dissolution of Lopinavir and Ritonavir Marketed Formulations.
6.3.4 Fourier Transforms Infrared Radiation measurement (FT-IR) Studies of Pure Lopinavir and Ritonavir Drugs 181
6.3.5 DSC Studies of Pure Lopinavir and Ritonavir Drugs 181
6.3.6 Analytical Methods 182
6.3.7 Formulation of Lopinavir and Ritonavir Multi Unit GRFDDS 185
6.3.8 In vitro Buoyancy Studies 190
6.3.9 in vitro Drug Dissolution Studies 191
6.3.10 Kinetic Analysis of Release Data 205
6.3.11 Drug-Polymer Compatibility Studies 219
6.3.12 Moisture Uptake Study of Melt Granules 226
6.3.13 Accelerated Stability Studies of Optimized Formulations of Ritonavir and Lopinavir (MF 37) 227
6.3.14 Scanning Electron Microscopy (SEM) Studies Optimized Formulations of Ritonavir and Lopinavir (MF 37) 229

CHAPTER-7
FORMULATION AND EVALUATION OF REGIOSELECTIVE NON-EFFERVESCENT FLOATING BILAYERED TABLETS OF VALGANCICLOVIR

7.1 Pre Formulation Studies 231
7.1.1 Determination of Valganciclovir Solubility 231
<table>
<thead>
<tr>
<th>7.1.2</th>
<th>Construction of Standard Calibration Curve for Valganciclovir</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.3</td>
<td>Multimedia Dissolution of Valganciclovir Marketed Formulations</td>
<td>231</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Fourier Transforms Infrared Radiation (FT-IR) Studies of Valganciclovir Pure Drug</td>
<td>231</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Differential Scanning Calorimetry (DSC) Studies of Valganciclovir</td>
<td>232</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Analytical Methods For Estimation of Valganciclovir</td>
<td>232</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Scanning Electron Microscopy Studies of Valganciclovir</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.2</th>
<th>Formulation of Non-Effervescent GRF Bilayered Tablets of Valganciclovir</th>
<th>232</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1</td>
<td>Characterization of Designed Formulations of Valganciclovir</td>
<td>232</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Moisture Uptake Studies of Valganciclovir Formulations</td>
<td>233</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Formulation of Controlled Release Layer of Valganciclovir</td>
<td>234</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Formulation of Gastric Layer of Valganciclovir</td>
<td>234</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Formulation of Noneffervescent GRF Bilayered Tablets of Valganciclovir</td>
<td>234</td>
</tr>
<tr>
<td>7.2.6</td>
<td>in vitro Buoyancy Studies</td>
<td>235</td>
</tr>
<tr>
<td>7.2.7</td>
<td>in vitro Drug Release Studies</td>
<td>235</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Kinetic Analysis of Release Data</td>
<td>236</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Statistical Comparison of Dissolution Profiles of Valganciclovir</td>
<td>236</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Compatibility Studies by IR and DSC</td>
<td>237</td>
</tr>
<tr>
<td>7.2.11</td>
<td>Accelerated stability studies on the Optimized Valganciclovir Formulations</td>
<td>237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.3</th>
<th>Results and Discussions</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Valganciclovir Solubility Determination</td>
<td>238</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Construction of standard calibration curves for Valganciclovir</td>
<td>239</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Multimedia Dissolution of Valganciclovir Marketed Formulations</td>
<td>240</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Fourier Transforms Infrared Radiation measurement (FT-IR) of Pure Valganciclovir Drug</td>
<td>241</td>
</tr>
<tr>
<td>7.3.5</td>
<td>DSC Studies of Pure Valganciclovir Drug</td>
<td>241</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Analytical Methods</td>
<td>242</td>
</tr>
</tbody>
</table>
7.3.7 Formulation and Optimization of Controlled Release Layer of Valganciclovir 243

7.3.8 Formulation and Optimization of Gastric Layer of Valganciclovir 246

7.3.9 Formulation and Optimization of Non-Effervescent Bilayered Tablets of Valganciclovir 249

7.3.10 Analysis of Release Data 254

7.3.11 Drug - Excipients Compatability Studies of IR and DSC 259

7.3.12 Moisture Uptake Studies of Optimized Bilayered Tablets of Valganciclovir 267

7.3.13 Accelerated Stability Studies of Optimized Bilayered Tablets of Valganciclovir 268

7.3.14 Scanning Electron Microscopy Studies 270

CHAPTER 8

In vivo CLINICAL STUDY OF LAMIVUDINE MULTIUNIT GASTRORETENTIVE FLOATING DOSAGE FORMS

8.1 *in vivo* Evaluation of Lamivudine Gastroretentive Multiunit Floating Dosage Forms 271

8.2 Bioavailability Study Protocol 272

8.2.1 Study objective 272

8.2.2 Study protocol 272

8.3 Standard calibration curve by HPLC Method 274

8.4 *in vivo* Clinical Study and Analysis of Blood Samples 276

8.4.1 Blood Sampling 276

8.4.2 Analytical method and Instrumentation 277

8.4.3 Chromatographic conditions 277

8.4.4 Extraction Procedure of Lamivudine and Stavudine (I.S.) from Rabbit Plasma 277

8.5 Results and Discussion 284

8.5.1 Assessment of Pharmacokinetic Parameters 284
CHAPTER 9

In vivo ROENTGENOGRAPHY STUDIES OF STAVUDINE MULTIUNIT
GASTRORETENTIVE FLOATING DOSAGE FORMS

9.1 in vivo Roentgenography (X-Ray) Studies of Stavudine Multiunit GRFDF’s 286
9.2 in vivo Roentgenography (X-Ray) Study Protocol 287
 9.2.1 Study objective 287
 9.2.2 Study protocol 287
 9.2.2 Dose and Composition 288
 9.2.2 in vivo X-Ray study Procedure 288
9.3 Results and Discussion 291
 9.3.1 in vivo X-Ray Studies 291
 Intra-Gastric Behavior of the Stavudine Multiunit GRFDF’s 291

CHAPTER 10

SUMMARY AND CONCLUSIONS

10.1 Formulation and Evaluation of Gastroretentive Floating Dosage Forms of Stavudine 292
10.2 Formulation and Evaluation of Lamivudine Non-effervescent Gastroretentive Dosage Forms Employing Novel Lipoidal Carriers Gastroselective Retention and Evaluation of Hydrodynamically Balanced Multiunit Floating Dosage Forms of Lopinavir and Ritonavir 299
10.4 Formulation and Evaluation of Regioselective Non-effervescent Floating Bilayered Tablets of Valganciclovir in vivo Clinical Study of Lamivudine Multiunit Gastroretentive Floating Dosage Forms 302
10.5 in vivo Roentgenography Studies of Stavudine Multiunit Gastroretentive Floating Dosage Forms 305
10.6 Conclusions 306
10.8 Future Prospective 306

REFERENCES 307