DECLARATION

I declare that the thesis entitled “Ameliorative effect of Hederagenin from Sapindus trifoliatus L. in in vitro and in vivo model for Type 2 diabetes mellitus and NAFLD” submitted by me for the Degree of Doctor of Philosophy is the record of work carried out by me during the period from January, 2010 to February, 2014 under the guidance and supervision of Dr. R. Dhamotharan, Associate Professor in Botany, PG and Research Department of Plant Biology and Plant Biotechnology, Presidency College (Autonomous), Chennai- 5 and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this University or any other University or other similar institution of Higher Learning.

Chennai 600 005

(P.VINITHA LAKSHMI)
This thesis is dedicated to Dr. G. K. Kumar, who taught me the value of Ph.D., and without whom (Life) science would be a Greek and Latin. I am deeply indebted to him for continued support and unwavering faith in me.
My deep sense of gratitude to Everyone – my husband, SUDHAKAR, my father, mother and my sister, my in laws for their great support and sacrifice to pursue my dream. Smiling faces of my daughter Meghna and my Son Madhav keeps my day-to-day life lively.
ACKNOWLEDGEMENTS

To my guide, Dr. R. Dhamotharan, Associate Professor in Plant Biology and Plant Biotechnology, Presidency College, Chennai-5.

It feels great that very soon I am going to miss all your scoldings and have to say good bye to you sir. Those scoldings have helped me to achieve great heights, it has got lots of meaning and learning. Sir, I am really impressed with your patience and giving me freedom to work, think and decide by ourselves to do the project. This freedom has made us independent to handle all the hurdles, read individually and answers all your doubts. Guide, is a single word that the university would mention you, but for me you are more than an adviser, mentor, well wisher and kind hearted person whom I would never forget in my lifetime. Thank you! would be a simple word to u Sir. A special thanks to your family members too.

I thank the Principal and Dr. Pandian, Head of the Plant Biology and Plant Biotechnology, Presidency College, Chennai for their constant encouragement besides providing the facilities to carry out the study.

I also thank Dr. A.S. Elumalai (Associate Professor, Department of Plant Biology and Biotechnology, Presidency College) and Dr. S. Saravanan (Associate Professor Department of Botany, Pachaiyappa’s College) for acting as Doctoral committee members throughout my project work and guiding me throughout the work. I also thank other staff members Dr.P.T. Devarajan, Dr.S.Ravikumar and Dr.B.Shankaran, Department of Plant Biology and Biotechnology, Presidency College.

My profound thanks to Dr. Ayesha Head of the Department Microbiology, Mohammed Sathak College, Chennai-119, Dr. S. Murugesan, Asst. Professor, PG and Research Dept of Botany, Pachaiyaappa’s College, Chennai, Dr.S. Gurunathan, Asistant Professor, SRM University, Chennai, Dr.M.C.Sridharan, Assitant professor, Department of Plant Biology and Plant Biotechnology, New College, Chennai for their support, co-operation and encouragement in one way or other in my research work.
Research Facilities

I sincerely thank Mr. A. Pradeep Kumar (Kan Health Care), for providing sample kits for my research work, SIMPRA, Thanjavur to carry out Protein Biology and oxidative analysis work and Biosys Ltd, Chennai for providing lab space to carry out cell culture work.

To my Mentors

My heartfelt thanks to Dr. Srinivasa (Senior Scientist-Department of Pharmacology, Glenmark, Mumbai) who helped from the stage conceptualization of the project to its implementation. He taught me how to ask questions and express my ideas. He showed me different ways to approach a research problem and the need to be persistent to accomplish any goal.

My heartfelt thanks to Dr.Niranjan (PERD Centre, Ahemedabad), for getting me the purified compound and helping me with all the spectroscopic analysis.

Thanks also to my friend Mr.Gunaskaran who carried their vigor and rosy faces to make the day’s blossom.

To my past Teachers

I am always indebted to my teachers Dr.Krishna Kumar, Dr.Nirmala, Mr.O.S.Ravikumar in the past who have sown the seeds of Microbiology and left those for it grow to what I am over the years.
CONTENTS

GENERAL INTRODUCTION

... 1

REVIEW OF LITERATURE

... 13

CHAPTER 1

Isolation, purification, structural elucidation and TLC Densitometric Quantification of Hederagenin from *Sapindus trifoliatus* L. fruits

1.1 INTRODUCTION

... 34

1.2 *Sapindus trifoliatus* L.

1.2.1 Botanical identity

... 35

1.2.2 Distribution

... 35

1.2.3 Vernacular names

... 36

1.2.4 Description

... 36

1.2.5 Ethnopharmacological value

... 37

1.2.6 Chemistry- Major chemical components reported from fruit pericarp

... 39

1.2.7 Pharmacological value

... 40

1.2.8 Isolation of bioactive compound–Hederagenin (A saponin fraction)

... 41

1.3 MATERIALS AND METHODS

... 41

1.3.1 Plant material collection and authentication

... 41

1.3.2 Preparation of extract

... 42

1.3.3 TLC Fingerprint Profile

... 42

1.3.4 Chromatographic separation and isolation of hederagenin

... 42

1.3.5 Structural elucidation by spectroscopy

... 43
1.4 RESULTS

1.4.1 TLC Fingerprint profile 43
1.4.2 Chromatographic separation and isolation of hederagenin 44
1.4.3 Structural elucidation by spectroscopy analysis 47

1.5 DISCUSSION 49

CHAPTER 2

Action of Antidiabetic drugs (Hederagenin) on the impaired biological response of Type 2 diabetes

2.1 INTRODUCTION 51

2.2 DIABETES MELLITUS 52
2.2.1 Prevalance of Diabetes Mellitus 54
2.2.2 Types of Diabetes Mellitus 55

2.3 ROLE OF INSULIN & INSULIN RESISTANCE 58

2.4 ANTI-DIABETIC DRUG 60
2.4.1 DPP IV Inhibitors 65

2.5 In vitro SCREENING OF HEDERAGENIN FOR DPP-IV INHIBITORS 67

2.6 RESULTS 69

2.7 DISCUSSION 71

CHAPTER 3

Effect of Hederagenin on the in vivo pharmacological model of Type 2 Diabetes

3.1 INTRODUCTION 75

3.2 MATERIALS AND METHODS 76
3.2.1 Reagents and instruments required 76
3.2.2 Animals 76
CHAPTER-4

Effect of Hederagenin on the Type 2 Diabetes comorbidity: Hyperlipidemia

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Reagents and instrument required

4.2.2 Animals

4.2.3 Composition of High fat diet (HFD)

4.2.4 Effects of Hederagenin on HFD/STZ induced diabetic mice

4.2.5 Oral Glucose Tolerance Test

4.2.6 Histopathology of mouse pancreas and kidney

4.2.7 Biochemical parameters

4.2.8 Haematological parameters

4.2.9 Body weight

4.2.10 Feed intake
4.2.11 Lipid peroxidation – Malondialdehyde estimation 89
4.2.12 Estimation of glutathione level 89
4.2.13 Catalase test 90
4.2.14 Superoxide dismutase (SOD) 93
4.2.15 Statistical analysis 95

4.3 RESULTS 95
4.3.1 Effect of Hederagenin on OGTT in HFD/STZ mice 95
4.3.2 Histopathological examination 96
4.3.3 Biochemical parameters 96
4.3.4 Haematological parameters 97
4.3.5 Body weight and feed intake 97
4.3.6 Liver Anti-oxidant activity 97

4.4 DISCUSSION 107

CHAPTER -5

Effect of Hederagenin on the type 2 diabetes comorbidity Non alcoholic fatty liver disease (NAFLD)

5.1 INTRODUCTION 111
5.1.1 Diabetes- NAFLD linkage 111
5.1.2 NAFLD links NASH 112
5.1.3 Prevalance 112
5.1.4 Mechanism of action 113
5.1.5 How steatosis progresses to steatohepatitis 116

5.2 MATERIAL AND METHODS 117
5.2.1 Reagents and instruments required 117
5.2.2 Experimental Animals 117
5.2.3 Composition of High fat diet 118
5.2.4 Experimental design – *in vivo* model of NASH 118
5.2.5 Measurement of plasma biochemical parameters 119
5.2.6 Estimation of insulin 119
5.2.7 HOMO-IR 121
5.2.8 Liver processing 121
5.2.9 Hepatic triglycerides 122
5.2.10 Estimation of TNF-α mouse, ELISA system 125
5.2.11 Hepatic malondialdehyde assay (MDA) 126
5.2.12 Hepatic reduced glutathione (GSH) 127
5.2.13 Maintenance of HepG2 cells 127
5.2.14 Steatosis calorimetric assay 128
5.2.14 A Qualitative analysis of *in vitro* NASH staining of cells with oil Red O 130
5.2.14 B Quantitative analysis of *in vitro* NASH 130
5.2.15 Cell Viability assay- MTT Assay 131
5.2.16 Cytotoxicity assay using LDH activity 134
5.2.17 Protein estimation- Hepatic tissue homogenate 135
5.2.18 Isolation of protein 136
5.2.18 B Enhanced chemiluminescence (ECL) Detection 138
5.2.19 Histopathological examination 139
5.2.20 Statistical analysis 139

5.3 RESULTS 140
5.3.1 Metabolic parameters 140
5.3.2 Fasting blood glucose, insulin and HOMR-IR index 140
5.3.3 Effect of treatment on body weight and feed intake and liver index 140
5.3.4 The inflammatory cytokine, TNF-α 141
5.3.5 Oxidative stress markers 141
5.3.6 Cell line studies- Oil red O assay 142
5.3.7 LDH activity 142
5.3.8 Immunoblot analysis 142
5.3.9 Histopathological examination 143

5.4 DISCUSSION 156

CHAPTER-6

Genetic Toxicological Studies

Cytogenetic (in vitro) assay measuring Chromosomal Abbreviation frequencies induced by the Hederagenin as active ingredient in human peripheral blood lymphocytes

6.1 INTRODUCTION 162
6.2 MATERIALS AND METHODS 163
 6.2.1 Reagents required 163
 6.2.2 Procedure 165
 6.2.4 Data evaluation 169
 6.2.5 Positive data interpretation 169
6.3 RESULTS 170
 6.3.1 Cytogenetic assay 170
 6.3.2 Chromosomal aberrations 170
 6.3.3 Confirmatory assay 171
6.4 DISCUSSION 181
TABLES AND FIGURES

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Plant derived ethanotherapeutics and traditional modern medicine</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.1</td>
<td>Medicinal use of Sapindus trifoliatus</td>
<td>38</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Commercial use of Sapindus trifoliatus</td>
<td>39</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Chromatographic separation – yield</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Origin of Diabetes</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Mechanism of action of antidiabetic drugs</td>
<td>61</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Herbal plant used as Antidiabetic drugs</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Datas of Recombinant DPP IV assay</td>
<td>70</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Results of Recombinant DPP IV assay as per Graph pad prism</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Acute inhibition by Hederagenin on plasma DPPIV in lean mice</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Effect of Hederagenin on metabolic parameters</td>
<td>101</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Effect of Hederagenin on Haematological parameters</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Estimation of lipid peroxidation- Malondialdehyde</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Estimation of glutathione level</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Catalase assay</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>SOD test</td>
<td>106</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Effect of hederagenin and their combinations on serum AST, ALT, TC, TG and as well hepatic triglycerides level in the experimental design</td>
<td>144</td>
</tr>
</tbody>
</table>
Table 5.2 Effect of hederagenin on fasting blood glucose, fasting insulin and HOMO-IR index in the experimental design

Table 5.3 Effect of hederagenin on body Weight, feed intake and liver index in the experimental groups

Table 5.4 Estimation of TNF-α

Table 6.1 Positive control details

Table 6.2 S9 cofactors

Table 6.3 Cytogenetic Assay – Percent Mitotic Index (Volunteer 1)

Table 6.4 Cytogenetic Assay – Percent Mitotic Index (Volunteer 2)

Table 6.5 Confirmatory Assay – Percent Mitotic Index

Table 6.6 Cytogenetic Assay – Aberration Summary (excluding gaps) without S9 (Volunteer -1)

Table 6.7 Cytogenetic Assay – Aberration Summary (excluding gaps) with S9 (Volunteer -1)

Table 6.8 Cytogenetic Assay – Aberration Summary (excluding gaps) without S9 (Volunteer -2)

Table 6.9 Cytogenetic Assay – Aberration Summary (excluding gaps) with S9 (Volunteer -2)

Table 6.10 Confirmatory Assay - Aberration Summary (excluding gaps) without S9 (Volunteer -1)

Table 6.11 Confirmatory Assay - Aberration Summary (excluding gaps) without S9 (Volunteer -2)
FIGURES

Figure 1 Role of insulin .. 25
Figure.1.1 Sapindus trifoliatus 35
Figure.1.2 Soapnuts from Sapindus trifoliatus 37
Figure 1.3 Chemical components from fruit pericar 40
Figure.1.4 TLC sheet ... 43
Figure. 1.5 UV Absorption Spectra of the Hederagenin ... 45
Figure 1.6 Infra red spectrum of Hederagenin 46
Figure 1.7 Atmospheric pressure ionization mass spectrum of
hederagenin ... 46
Figure 1.8 Proton Nuclear Magnetic Resonance (1H NMR) Spectrum 47
Figure.1.9 Expanded Proton Nuclear Magnetic Resonance (1H NMR)
Spectrum ... 48
Figure 1.10 Carbon Nuclear Magnetic Resonance (13C NMR) Spectrum 48
Figure 1.11 Structure of Hederagenin 49
Figure.2.1 Number of adults with diabetes in developed and developing
countries in 2010 and 2030, according to age group 54
Figure.2.2 Pathophysiology of Type 2 diabetes mellitus 57
Figure.2.3 Mechanism of DPP IV 65
Figure 2.4 Dose response curve for in vitro DPP IV assay 71
Figure.3.1.A Effect of Hederagenin on OGTT in lean mice 80
Figure 3.1 B Area Under Curve (AUC 0-120min) 80
Figure 3.2 Acute inhibition by hederagenin on plasma DPPIV
in lean mice ... 81
Figure 3.3 A Effect of Hederagenin on blood glucose levels in
normoglycemic mice ... 82
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under Curve</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary cells</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon Di Oxide</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagles Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribo Nucleic Acid</td>
</tr>
<tr>
<td>DPP IV</td>
<td>Dipeptidyl peptidase IV</td>
</tr>
<tr>
<td>ED$_{50}$</td>
<td>Effective Dose</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acetic Acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ESR</td>
<td>Eosinophilic Sedimentation Rate</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal Bovine Serum</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>Sulphuric Acid</td>
</tr>
<tr>
<td>H$_3$PO$_4$</td>
<td>Phosphoric Acid</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HQC</td>
<td>High Quality Control Sample</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse Raddish Peroxidase</td>
</tr>
<tr>
<td>IP</td>
<td>Intra Peritoneal</td>
</tr>
<tr>
<td>IU</td>
<td>International Units</td>
</tr>
<tr>
<td>IAEC</td>
<td>Institute of Animal Ethics Committee</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>Inhibitory Concentration</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IR</td>
<td>Infra red</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium Bromide</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>KCL</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>Potassium Di Hydrogen Phosphate</td>
</tr>
<tr>
<td>LC MS/MS</td>
<td>Liquid Chromatography Mass Spectroscopy</td>
</tr>
<tr>
<td>LN$_2$</td>
<td>Liquid Nitrogen</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>Magnesium Chloride</td>
</tr>
<tr>
<td>MTT</td>
<td>5-diphenyltetrazolium bromide (MTT)</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>Sodium Bicarbonate</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$</td>
<td>Di Sodium Hydrogen Phosphate</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Diphosphate</td>
</tr>
<tr>
<td>NAFLD</td>
<td>Non alcoholic Fatty Liver Disease</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NaN$_3$</td>
<td>Sodium Azide</td>
</tr>
</tbody>
</table>
NaOH - Sodium Hydroxide
NMR - Nuclear magnetic resonance
NOAELs - No Observed Adverse Effect Levels
O.D - Optical Density
PBS - Phosphate Buffered Saline
PO - Per Oral
RBC - Red Blood corpuscles
R_f - Relative factor
RLM - Rat Liver Microsomes
RPMI - Roswell Park Memorial Institute
RT - Room Temperature
S.E.M - Standard Error Mean
SAv-HRP - Streptavidin Horse Radish Peroxidase
SDS - Sodium doedecyl sulphate
TANUVAS - Tamil Nadu University of Veterinary animal science
TLC - Thin Layer chromatography
TNF-Î± - Tumour Necrosis Factor alpha
TPA - 12-O-Tetra Decanoyl Phorbolacetate
UV - Ultra Violet
WBC - White Blood Cells

UNITS OF MEASURE

% - Percentage
δ - Delta
µg - Microgram
µl - Microlitre
°C - Degree Celsius
cm - Centimetre
cm⁻¹ - Per Centimeter
IC₅₀ - Inhibition Concentration
L - Litre
mg - Milligram
MHz - Mega Hertz
ml - Millilitre
mm - Millimeter
Mm - Milli Molar
mV - milli Volts
ng - Nanogram
nm - Nanometer
NM - Nano Molar
Pg - Picogram
ppm - Parts Per
rpm - Revolutions Per Minute
w/w - Weight by weight