CONTENTS

1	introduction And Literature Survey				
	1.1	General Introduction	01		
	1.2	Titania	03		
	1.3	Industrial applications of titania	04		
	1.4	Titania as catalyst and catalyst support	05		
	1.5	Different methods of preparation of metal oxides	07		
	1.6	The sol-gel process	09		
	1.7	Mechanism of sol-gel process	09		
	1.8	Advantages of sol-gel method	10		
	1.9	Anatase and rutile	11		
	1.10	Mechanism of anatase and rutile crystallization	12		
	1.11	Sulfated titania	13		
	1.12	Surface acidity measurements	14		
	1.13	Test reactions for acidity	18		
	1.14	Reactions selected for the present study	20		
	1.15	Objective of the present work	27		
		References	29		
2	Mate	Materials And Experimental Method			
	2.1	Introduction	41		
	2.2	Catalyst preparation	42		
	2.3	Catalyst notations	44		
	2.4	Characterization techniques	45		
	2.5	Surface acidity measurements	52		
	2.6	Catalytic activity measurements	56		
		References	60		

3	Physi	Physico-Chemical Characterization				
	3.1	Introduction	62			
	3.2	Physical characterization	63			
	3.3	Surface acidity measurements	84			
	3.4	Conclusions	114			
		References	115			
4	Alkyl	Alkylation of Arenes				
	Friedel-Crafts Benzylation of Arenes					
	4.1	Introduction	122			
	4.2	Process optimization	124			
	4.3	Comparison of different systems	134			
	4.4	Mechanism of benzylation reaction	138			
	4.5	Conclusions	140			
	Tert-butylation of phenol					
	4.6	Introduction	142			
	4.7	Process optimization	143			
	4.8	Comparison of different systems	148			
	4.9	Mechanism of tert-butylation reaction	153			
	4.10	Conclusions	155			
		References	156			
5	Beck	Beckmann Rearrangement of Cyclohexanone Oxime				
	5.1	Introduction	160			
	5.2	Process optimization	162			
	5.3	Comparison of different systems	170			
	5.4	Mechanism of Beckmann rearrangement reaction	174			
	5.5	Conclusions	176			
		References				

6	Nitration of Phenol				
	6.1	Introduction	179		
	6.2	Process optimization	181		
	6.3	Comparison of different systems	186		
	6.4	Mechanism of nitration reaction	190		
	6.5	Conclusions	191		
		References	192		
7	Photochemical Degradation of Methylene Blue				
	7.1	Introduction	193		
	7.2	Process optimization	196		
	7.3	Comparison of different systems	200		
	7.4	Mechanism of photochemical reaction	205		
	7.5	Conclusions	206		
		References			
8	Summary And Conclusions				
	8.1	Summary	210		
	8.2	Conclusions	213		
		Future outlook	214		

List of publications

Resume