LIST OF TABLES

Table 1:	Proximate composition of raw muscle of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.
Table 2:	Percent decrease in proximate composition of raw muscle of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.
Table 3:	Proximate composition of raw muscle of *Wallago attu* stored under frozen conditions at -12±2 °C.
Table 4:	Percent decrease in proximate composition of raw muscle of *Wallago attu* stored under frozen conditions at -12±2 °C.
Table 5:	Proximate composition of muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and ascorbic acid separately and stored under frozen conditions at -12±2 °C.
Table 6:	Percent decrease in proximate composition of muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2 °C.
Table 7:	Proximate composition of muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2 °C.
Table 8:	Percent decrease in proximate composition of muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2 °C.
Table 9:	Proximate composition of muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with 0.5% of aqueous solutions of citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2 °C.
Table 10:	Percent decrease in proximate composition of muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with 0.5% of aqueous solutions of citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2 °C.
Table 11: Proximate composition of muscle of *Wallago attu* treated with 0.5% of aqueous solutions of citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2 °C.

Table 12: Percent decrease in proximate composition of muscle of *Wallago attu* treated with 0.5% of aqueous solutions of citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2 °C.

Table 13: Chemical changes in raw muscle of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Table 14: Chemical changes in raw muscle of *Wallago attu* stored under frozen conditions at -12±2 °C.

Table 15: Chemical changes in muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and ascorbic acid separately and stored under frozen conditions at -12±2 °C.

Table 16: Chemical changes in muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Table 17: Chemical changes in muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2° C.

Table 18: Chemical changes in muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Table 19: Bacteriological changes in raw muscle of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Table 20: Bacteriological changes in raw muscle of *Wallago attu* stored under frozen conditions at -12±2°C.

Table 21: Bacteriological changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and ascorbic acid separately and stored under frozen conditions at -12±2°C.

Table 22: Bacteriological changes in the muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2°C.
Table 23: Bacteriological changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Table 24: Bacteriological changes in the muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Table 25: Bacteriological changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of Potassium sorbate and stored under frozen conditions at -12±2°C.

Table 26: Bacteriological changes in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of Potassium sorbate and stored under frozen conditions at -12±2°C.

Table 27: Sensory scores of muscles of *Hypophthalmichthys molitrix* and *Wallago attu* treated with different concentrations of Antioxidants (Citric acid and Ascorbic acid).

Table 28: Sensory scores of muscles of *Hypophthalmichthys molitrix* and *Wallago attu* treated with different concentrations of Antimicrobial (Potassium sorbate).

Table 29: Proximate composition of raw muscle and fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Table 30: Percent decrease in proximate composition of raw muscle and fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Table 31: Proximate composition of raw muscle and fish cutlets of *Wallago attu* stored under frozen conditions at -12±2°C.

Table 32: Percent decrease in raw muscle and proximate composition of Fish cutlets of *Wallago attu* stored under frozen conditions at -12±2°C.

Table 33: Chemical changes in raw muscle and fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Table 34: Chemical changes in raw muscle and fish cutlets of *Wallago attu* stored under frozen conditions at -12±2°C.
Table 35: Bacteriological changes in raw muscle and fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Table 36: Bacteriological changes in raw muscle and fish cutlets of *Wallago attu* stored under frozen conditions at -12±2 °C.

Table 37: Proximate composition of Veg noodles (Control) v/s Fish noodles stored at ambient temperature (28° C).

Table 38: Chemical changes in Veg noodles (control) v/s Fish noodles stored at ambient temperature (28° C).

Table 39: Sensory scores of raw fish muscle of *Hypophthalmichthys molitrix* (H_R) stored at -12° C.

Table 40: Sensory scores of raw fish muscle of *Wallago attu* (W_R) stored at -12° C.

Table 41: Sensory scores of Fish cutlets of *Hypophthalmichthys molitrix* stored at -12° C.

Table 42: Sensory scores of Fish cutlets of *Wallago attu* stored at -12° C.

Table 43: Sensory scores of Veg noodles (control) stored at ambient temperature (28° C).

Table 44: Sensory scores of Fish noodles (made from the mince of *Wallago attu*) stored at ambient temperature (28° C).
LIST OF FIGURES

Fig 1: Proximate composition of raw muscle of *Hypophthalmichtys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Fig 2: Percent decrease in proximate composition of raw muscle of *Hypophthalmichtys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Fig 3: Proximate composition of raw muscle of *Wallago attu* stored under frozen conditions at -12±2°C.

Fig 4: Percent decrease in proximate composition of raw muscle of *Wallago attu* stored under frozen conditions at -12±2°C.

Fig 5(a): Protein content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 5(b): Lipid content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 5(c): Ash content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 5(d): Moisture content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 5(e): Protein content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 5(f): Lipid content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 5(g): Ash content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.
Fig 5(h): Moisture content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 6(a): Percental decrease in Protein content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 6(b): Percental decrease in lipid content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 6(c): Percental decrease in ash content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 6(d): Percental decrease in moisture content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 6(e): Percental decrease in protein content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 6(f): Percental decrease in lipid content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 6(g): Percental decrease in ash content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 6(h): Percental decrease in moisture content of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.
Fig 7(a): Protein content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 7(b): Lipid content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 7(c): Ash content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 7(d): Moisture content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 7(e): Protein content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 7(f): Lipid content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 7(g): Ash content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 7(h): Moisture content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 8(a): Percental decrease in protein content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 8(b): Percental decrease in lipid content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 8(c): Percental decrease in ash content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.
Fig 8(d): Percental decrease in moisture content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 8(e): Percental decrease in protein content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions.

Fig 8(f): Percental decrease in lipid content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions.

Fig 8(g): Percental decrease in ash content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions.

Fig 8(h): Percental decrease in moisture content of muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions.

Fig 9: Proximate composition of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 10: Percental decrease in proximate composition of muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 11: Proximate composition of muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 12: Percental decrease in proximate composition of muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 13: Chemical changes in raw muscle of *Hypophthalmichtys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Fig 14: Chemical changes of raw muscle of *Wallago attu* stored under frozen conditions at -12±2°C.
Fig 15 (a): TBA percentage in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 15 (b): TBA percentage in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 15 (c): FFA percentage in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 15 (d): FFA percentage in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 15 (e): pH in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 15 (f): pH in the muscle of *Hypophthalmichtys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 16 (a): TBA percentage in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 16 (b): TBA percentage in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 16 (c): FFA percentage in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 16 (d): FFA percentage in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 16 (e): pH in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.
Fig 16 (f): pH in the muscle of *Wallago attu* treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 17: Chemical composition of muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 18: Chemical composition of muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 19: Bacteriological changes in raw muscle of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2°C.

Fig 20: Bacteriological changes in raw muscle of *Wallago attu* stored under frozen conditions at -12±2°C.

Fig 21 (a): TPC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 21(b): TPC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 21(c): CC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 21(d): CC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 21(e): PC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of citric acid and stored under frozen conditions at -12±2°C.

Fig 21(f): PC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of different concentrations of ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 22 (a): TPC changes in the muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2°C.
Fig 22 (b): TPC changes in the muscle of *Wallago attu* treated with different concentrations of ascorbic acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 22 (c): CC changes in the muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 22 (d): CC changes in the muscle of *Wallago attu* treated with different concentrations of ascorbic acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 22 (e): PC changes in the muscle of *Wallago attu* treated with different concentrations of citric acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 22 (f): PC changes in the muscle of *Wallago attu* treated with different concentrations of ascorbic acid and ascorbic acid and stored under frozen conditions at -12±2°C.

Fig 23: Bacteriological changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 24: Bacteriological changes in the muscle of *Wallago attu* treated with aqueous solutions of 0.5% citric acid and ascorbic acid (1:1) and stored under frozen conditions at -12±2°C.

Fig 25 (a): TPC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with different concentrations of aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2°C.

Fig 25 (b): CC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with different concentrations of aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2°C.

Fig 25 (c): PC changes in the muscle of *Hypophthalmichthys molitrix* (Silver carp) treated with different concentrations of aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2°C.

Fig 26 (a): TPC changes in the muscle of *Wallago attu* treated with aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2°C.
Fig 26 (b): CC changes in the muscle of *Wallago attu* treated with aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2 °C.

Fig 26(c): PC changes in the muscle of *Wallago attu* treated with aqueous solutions of Potassium sorbate and stored under frozen conditions at -12±2 °C.

Fig 27 (a): Sensory scores of muscles of *Hypophthalmichthys molitrix* treated with 0.5% Citric acid and Ascorbic acid (1:1).

Fig 27 (b): Sensory scores of muscles of *Wallago attu* treated with with 0.5% Citric acid and Ascorbic acid (1:1).

Fig 28 (a): Sensory scores of muscles of *Hypophthalmichthys molitrix* treated with 5% Antimicrobial (Potassium sorbate).

Fig 28 (b): Sensory scores of muscles of *Wallago attu* treated with 5% Antimicrobial (Potassium sorbate).

Fig 29: Proximate composition of Fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Fig 30: Percental decrease in proximate composition of Fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Fig 31: Proximate composition of Fish cutlets of *Wallago attu* stored under frozen conditions at -12±2 °C.

Fig 32: Percent decrease in proximate composition of Fish cutlets of *Wallago attu* stored under frozen conditions at -12±2 °C.

Fig 33: Chemical composition of Fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Fig 34: Chemical composition of Fish cutlets of *Wallago attu* stored under frozen conditions at -12±2 °C.

Fig 35: Bacteriological changes in Fish cutlets of *Hypophthalmichthys molitrix* (Silver carp) stored under frozen conditions at -12±2 °C.

Fig 36: Bacteriological changes in Fish cutlets of *Wallago attu* stored under frozen conditions at -12±2 °C.
Fig. 37 (a): Proximate composition of Veg noodles (Control) stored at ambient temperature (28°C).

Fig. 37 (b): Proximate composition of Fish noodles stored at ambient temperature (28°C).

Fig 38 (a): Chemical changes in Veg noodles (control) stored at ambient temperature (28°C).

Fig 39: Sensory scores of raw fish muscle of *Hypophthalmichthys molitrix* (H_R) stored at -12°C.

Fig 40: Sensory scores of raw fish muscle of *Wallago attu* (W_R) stored at -12°C.

Fig 41: Sensory scores of Fish cutlets of *Hypophthalmichthys molitrix* stored at -12°C.

Fig 42: Sensory scores of Fish cutlets of *Wallago attu* stored at -12°C.

Fig 43: Sensory scores of Veg noodles (control) stored at ambient temperature (28°C).

Fig 44: Sensory scores of Fish noodles (made from the mince of *Wallago attu*) stored at ambient temperature (28°C).