CONTENT

Chapter 1

1. INTRODUCTION

REVIEW OF LITERATURE
1.1 Fermented foods 5
1.2 Diversity of microflora in fermented foods 5
1.3 Fermentation 7
1.4 Lactic acid fermentation 8
1.5 Culture dependent methods for the isolation of microflora 10
1.6 Microflora responsible for fermentation 12
1.7 Fermented foods and health 13
1.8 Idli batter 14
1.9 Idli fermentation 17
1.10 Probiotics 18
1.11 Probiotic microorganisms 20
1.12 Selection of potential probiotics 21
1.13 Probiotics in human health 21
1.14 Acid and Bile tolerance 23
1.15 BSH Activity and Cholesterol Assimilation 23
1.16 Phytate degradation 25
1.17 Polysaccharides 26
1.18 Bacterial polysaccharides 27
1.19 Isolation and characterization of EPS producing Lactic acid bacteria 28
1.20 Biosynthesis of Exopolysaccharides 30
1.21 Structural characterization of Exopolysaccharide through Nuclear magnetic resonance 32
1.21.1 Physical characterization of Exopolysaccharides 33
1.21.2 Fourier transform infrared spectroscopy 33
1.21.3 Scanning electron microscopy and Atomic force Microscopy 33
1.21.4 Thermo-gravimetric and X-Ray diffraction analysis 34
1.21.5 Water solubility and Water holding capacity (WHC) 35
1.22 Application of Exopolysaccharides 36
1.221 Antioxidant properties 36
1.222 Anti-tumour properties 37
1.223 Rheological properties 37
1.224 Bio-film 38

Chapter 2

DIVERSITY OF MICROFLORA ISOLATED FROM IDLI BATTER DURING FERMENTATION

2.1 Introduction 40
2.2 Materials and methods 42
2.2.1 Reagents 42
2.3 Methods
2.3.1 Enumeration of microflora at different fermentation intervals in idli batter
2.3.2 Morphological characterization of the isolates
2.3.2.1 Gram’s staining
2.3.2.2 Catalase test
2.3.2.3 Biochemical characterization
2.3.3 Molecular characterization of the isolates
2.3.3.1 DNA isolation and amplification by PCR
2.3.3.2 DNA Sequencing and phylogenetic analysis
2.4 Results and discussion
2.4.1 Enumeration of microflora at different fermentation intervals in idli batter
2.5 Conclusion

Chapter 3
SCREENING FOR FUNCTIONAL PROPERTIES OF SELECTED MICROFLORA ISOLATED FROM IDLI BATTER

3.1 Introduction
3.2 Screening for functional properties of selected isolates
3.2.1 Acid and bile tolerance
3.2.2 Antimicrobial activity
3.2.3 Antibiotic sensitivity test
3.2.4 Bile salt hydrolase activity
3.2.5 Quantification of cholesterol assimilation
3.2.6 Phytase assay
3.2.6.1 Preliminary screening
3.2.6.2 Quantification of phytase activity
3.2.7 In vitro adhesion of bacterial cells
3.2.8 Statistical analysis
3.3 Results and Discussion
3.3 Screening of functional properties of selected isolates
3.3.1 Acid and bile tolerance
3.3.2 Antimicrobial activity against various pathogens
3.3.3 Antibiotic susceptibility
3.3.4 Preliminary screening of bile salt hydrolase and phytase activity
3.3.5 Cholesterol assimilation
3.3.6 Phytase activity
3.3.7 In vitro adhesion of bacterial cells
3.4 Conclusion

Chapter 4
ISOLATION AND CHARACTERIZATION OF EXOPOLYSACCHARIDES FROM LEUCONOSTOC LACTIS KC117496

4.1 Introduction
4.2 Materials and Methods
4.2.1 Preliminary screening for EPS-producing isolates
4.2.2 Extraction and purification of EPS
4.2.3 Sugar analysis through HPTLC
4.2.4 Fourier transforms infrared spectroscopy analysis
4.2.5 Nuclear magnetic resonance spectroscopy analysis
4.2.6 MALDI-TOF/TOF mass spectrometry
4.2.7 Thermogravimetric analysis and X-ray diffraction analysis
4.2.8 Atomic force microscopy and scanning electron microscopy analysis
4.2.9 Water solubility index
4.2.10 Water-holding capacity
4.2.11 2, 2-diphenyl-1-picrylhydrazyl radicals scavenging activity
4.2.12 Hydroxyl radical (OH) scavenging activity
4.2.13 Fe-chelating activity
4.3 Results and Discussion
4.3.1 Preliminary screening of EPS-producing bacteria
4.3.2 HPTLC analysis
4.3.3 FT-IR spectroscopy analysis
4.3.4 Nuclear magnetic resonance spectroscopy analysis
4.3.5 MALDI-TOF-MS analysis
4.3.6 Scanning electron microscopy
4.3.7 Atomic force Microscopy
4.3.8 Thermogravimetric analysis
4.3.9 X-ray diffraction analysis
4.3.10 Water solubility index and water-holding capacity
4.3.11 DPPH radical scavenging activity
4.3.12 Hydroxyl radical (OH) scavenging activity
4.3.13 Fe-chelating activity
4.4 Conclusion
Executive Summary
Conclusion
References
Annexure 1 list of publications (pages-12)
Annexure 2 NCBI genbank accessions of bacterial strains (pages-47)
Annexure 3 Errata portion