Contents

Preface i
Acknowledgement iii
Publications v
List of Figures ix
List of Tables xii

1. Introduction
1.1 Importance of the present work 2
1.2 Nuclear reactions 5
 1.2.1 Overview 5
 1.2.2 The reaction kinematics 6
 1.2.3 Neutron activation analysis 8
 1.2.3.1 Introduction 8
 1.2.3.2 Derivation of reaction rate 9
 1.2.3.3 Importance of neutron activation analysis 11
1.3 Neutron sources 12
1.4 Objective of the present thesis 13
1.5 Structure of present thesis 14
References 15

2. Nuclear Modular and Transport Codes 18
2.1 Introduction 19
2.2 Nuclear Reaction Models 19
 2.2.1 Compound nucleus model 20
 2.2.2 Direct Reaction 22
 2.2.3 Pre-equilibrium 22
 2.2.4 Optical Model 24
 2.2.5 Nuclear level density 24
 2.2.5.1 Composite Gilbert-Cameron model 25
 2.2.5.2 The Back-shifted Fermi gas Model 26
 2.2.5.3 The Generalized Superfluid Model 26
 2.2.5.4 The Enhanced Generalized Superfluid Model 27
 2.2.5.5 Microscopic level densities 27
3. Development of New Empirical Formula for (γ, n) reaction cross section near to GDR Peak

3.1 Introduction

3.2 Theory of Photo Neutron Production

3.3 Development of the Empirical Formula

3.3.1 Introduction

3.3.2 Fundamental Term

3.3.3 Isotopic Resonance Term

3.3.4 Energy Dependency Term

3.3.5 Rp Parameter

3.3.6 Sf Parameter

3.4 Results and discussion

3.5 Applications of Present Empirical Formula

3.6 Summary and conclusion

References

4. Measurement of (n, γ), (n, p) and (n, 2n) reaction cross sections of W and Gd isotopes

4.1. Introduction

4.2. Experimental details

4.2.1 Target Preparation

4.2.2 Neutron Irradiation at TIFR

4.3. Data analysis

4.3.1 Neutron Activation Analysis

4.3.2 Peak average neutron energy

4.3.3 Neutron flux calculation

4.4. Cross section correction for lower energy neutrons

4.5. Theoretical calculations

4.6. Results and discussion
5. Measurement of $^{183}\text{W}(n, p)^{183}\text{Ta}$ and $^{184}\text{W}(n, p)^{184}\text{Ta}$ reaction cross section in ^{252}Cf neutron field

5.1 Introduction
5.2 Experimental Details
 5.2.1 Neutron Source and Target
 5.2.2 Neutron Irradiation
5.3 Theoretical Calculations Using MCNP
 5.3.1 Neutron Spectra Calculation
 5.3.2 Detector Energy Calibration
5.4 Data Analysis – Neutron Activation Analysis
5.5 Nuclear Modular Code Prediction
5.6 Results and discussion
5.7 Summary and conclusion
References

6. Measurement of (n, p) cross section for some structural materials at 14.2 MeV

6.1 Introduction
6.2 Structural materials for nuclear reactor
6.3 Experimental
 6.3.1 Target preparation and irradiation
 6.3.2 Data acquisition and analysis
6.4 Theoretical Prediction
 6.4.1 TALYS – 1.6 Calculations
 6.4.2 EMPIRE – 3.2.2 Calculations
6.5 Results and discussion
6.6 Summary and conclusions
References

7. Final Summary and Conclusions of the Thesis

Reprints of Published Papers