List of Figures

1.1 Köhler curves for NaCl particles as solute with dry diameters of 0.03, 0.05, 0.10, 0.30 and 0.50 µm at temperature of 293 K. Supersaturation is expressed in percentage (for RH=100.6%, supersaturation = 0.6%). 20

1.2 ISCCP classification of clouds using cloud top pressure and cloud optical depth. 27

1.3 Region of study (30°S to 30°N, 30°E to 110°E). The location of tropical coastal station –Thiruvananthapuram (8.5°N, 77°E) is marked by ‘*.’ 58

2.1 All orbital tracks of CloudSat for (a) the ascending mode, (b) the descending mode, and (c) combined ascending and descending modes over the study region during the 16-day orbital cycle. These tracks are also valid for CALIPSO and other satellites in the A-Train constellation and get repeated after 233 orbits (once in 16 days). 66

2.2 (a) Altitude variation of Radar reflectivity factor (dBZ) along a CloudSat track on 2 June 2007 over the Arabian Sea, and (b) the corresponding cross-section of the cloud mask obtained from the GEOPROF algorithm. (c) Spatial distribution of clouds derived from AVHRR over the region within 1 hour from the CloudSat path. The straight line indicates the CloudSat track. The CloudSat Radar reflectivity and cloud mask shown in (a,b) are between the points A and B marked in (c). 69

2.3 All the 14 orbital tracks of the Megha-Tropiques on 08 November 2012 (00:00 to 23:59Z). The thick red line indicates a single orbit and its continuation into the subsequent orbit. (b) Orbital tracks of the Megha-Tropiques during the 7-day recurrent cycle. As the inclination is 19.98°, the sub-satellite tracks are always limited to 19.98°S and 19.98°N (Courtesy for Figure 2.3(b): LMD, France) 78

2.4 Same as Figure 2.3(a), but zoomed in the longitude band of 75 to 135°E. The shaded area indicates the swath for one orbital track indicated by the red line. The points ‘A’ and ‘B’ denotes two different geographical locations: Considering the swath of 2200 km, ‘A’ will be observed in 4 orbits while ‘B’ will be ‘seen’ in 5 orbits. 80

2.5 (a) Photograph of the Micropulse Lidar (MPL) system at Thumba and (b) schematic diagram of the MPL. 85
List of Figures

3.1 Monthly mean horizontal winds at 950 hPa level obtained from MERRA data during 2006 to 2011. ... 103
3.2 Long term (2000 to 2011) monthly mean SST over the Arabian Sea, the Bay of Bengal and the Indian Ocean obtained from TMI-SST. 106
3.3 Long term (1996-2010) monthly mean spatial variations of the frequency of occurrence of clouds (F_c) observed using NOAA-AVHRR. 108
3.4 Multi-year (2006 to 2011) seasonal mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 40 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during winter (DJF). ... 112
3.5 Multi-year (2006 to 2011) monthly mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 50 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during December, January and February. ... 113
3.6 Longitudinally averaged seasonal mean meridional circulation during winter, shown by vector plots of the average meridional and vertical winds in the longitude bands of 50 to 60°E, 70 to 80°E and 90 to 100°E as a function of altitude and latitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 114
3.7 Multi-year (2006 to 2011) seasonal mean longitude-altitude cross sections of the frequency of occurrence of clouds averaged for different latitude bands of 10° width (20 to 30°N, 10 to 20°N, ..., 30°S to 20°S) over the Indian subcontinent and the surrounding oceanic regions during winter. 118
3.8 Latitudinally averaged seasonal mean zonal circulation during winter, shown by vector plots of the average zonal and vertical winds in the latitude bands of 0 to 10°N and 0 to 10°S as a function of altitude and longitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. .. 119
3.9 Multi-year (2006 to 2011) seasonal mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 40 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during the pre-monsoon season (MAM). ... 121
3.10 Multi-year (2007 to 2010) monthly mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 40 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during March, April and May. .. 123
3.11 Longitudinally averaged seasonal mean meridional circulation during the pre-monsoon season, shown by vector plots of the average meridional and vertical winds in the longitude bands of 40 to 50$^\circ$E, 70 to 80$^\circ$E and 90 to 100$^\circ$E as a function of altitude and latitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 124

3.12 Multi-year (2006 to 2011) seasonal mean longitude-altitude cross sections of the frequency of occurrence of clouds averaged for different latitude bands of 10$^\circ$ width (20 to 30$^\circ$N, 10 to 20$^\circ$N, ..., 30 to 20$^\circ$S) over the Indian subcontinent and the surrounding oceanic regions during the pre-monsoon season. 125

3.13 Latitudinally averaged seasonal mean zonal circulation during the pre-monsoon season, shown by vector plots of the average zonal and vertical winds in the latitude bands of 0 to 10$^\circ$N and 0 to 10$^\circ$S as a function of altitude and longitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 126

3.14 Multi-year (2006 to 2011) seasonal mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10$^\circ$ width (30 to 40$^\circ$E, 40 to 50$^\circ$E, ..., 100 to 110$^\circ$E) over the Indian subcontinent and the surrounding oceanic regions during the Asian summer monsoon season (JJAS). 129

3.15 Same as Figure 3.14, but for a better graphical representation to depict the westward transport of clouds. 130

3.16 Multi-year (2006 to 2010) monthly mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10$^\circ$ width (30 to 40$^\circ$E, 40 to 50$^\circ$E, ..., 100 to 110$^\circ$E) over the Indian subcontinent and the surrounding oceanic regions during June, July, August and September. 131

3.17 Longitudinally averaged seasonal mean meridional circulation during the summer monsoon season, shown by vector plots of the average meridional and vertical winds in the longitude bands of 40 to 50$^\circ$E, 70 to 80$^\circ$E and 90 to 100$^\circ$E as a function of altitude and latitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 132

3.18 Multi-year (2006 to 2011) seasonal mean longitude-altitude cross sections of the frequency of occurrence of clouds averaged for different latitude bands of 10$^\circ$ width (20 to 30$^\circ$N, 10 to 20$^\circ$N, ..., 30$^\circ$S to 20$^\circ$S) over the Indian subcontinent and the surrounding oceanic regions during the Asian summer monsoon season. 134

3.19 Latitudinally averaged seasonal mean zonal circulation during the summer monsoon season, shown by vector plots of the average zonal and vertical winds in the latitude bands of 10 to 20$^\circ$N, 0 to 10$^\circ$N, 0 to 10$^\circ$S and 10$^\circ$S to 20$^\circ$S as a function of altitude and longitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 135
3.20 Multi-year (2006 to 2010) seasonal mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 40 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during the post-monsoon season (ON). .. 137

3.21 Multi-year (2006 to 2010) monthly mean latitude-altitude cross sections of the frequency of occurrence of clouds averaged for different longitude bands of 10° width (30 to 40°E, 40 to 50°E, ..., 100 to 110°E) over the Indian subcontinent and the surrounding oceanic regions during October and November. ... 138

3.22 Longitudinally averaged seasonal mean meridional circulation during the post-monsoon season, shown by vector plots of the average meridional and vertical winds in the longitude bands of 40 to 50°E, 70 to 80°E and 90 to 100°E as a function of altitude and latitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 139

3.23 Multi-year (2006 to 2011) seasonal mean longitude-altitude cross sections of the frequency of occurrence of clouds averaged for different latitude bands of 10° width (20 to 30°N, 10 to 20°N, ..., 30°S to 20°S) over the Indian subcontinent and the surrounding oceanic regions during the post-monsoon season. .. 141

3.24 Latitudinally averaged seasonal mean zonal circulation during the post-monsoon season, shown by vector plots of the average zonal and vertical winds in the latitude bands of 0 to 10°N and 0 to 10°S as a function of altitude and longitude. The vertical winds are multiplied by 50 for clearly representing the circulation pattern. Blue shade indicates downdraft and red shade indicates updraft. 142

3.25 (a–d) Seasonal mean latitude-altitude cross sections of F_{ALT} in the longitude band of 80 to 90°E (the Bay of Bengal sector) during the winter, pre-monsoon, summer monsoon and post-monsoon seasons of the individual years. .. 144

3.26 Latitude-altitude cross sections of F_{ALT} at different longitude bands during June, July, August and September of 2009. 146

4.1 (a) Long term (1996 to 2010) seasonal mean spatial distribution of the frequency of occurrence of clouds (F_C) during ASM (JJAS). Note the ‘pool of inhibited cloudiness’ where F_C is lesser at the southwest Bay of Bengal. .. 156

4.2 Monthly mean spatial distribution of F_C during (a) June, (b) July, (c) August and (d) September (averaged for 1996 to 2010). (e) Monthly mean latitude variation of F_C averaged along 80 to 85°E longitude band during June, July, August and September (average for 1996 to 2010). (f) Same as (e) but for the longitude variation averaged in the latitude band of 5 to 10°N. .. 157
4.3 (a) Average (2006 to 2010) seasonal mean latitude-altitude cross-section of the frequency of occurrence of clouds (F_{ALT}, expressed in percentage) during ASM along 80 to 85°E. (b) Same as (a) but for the longitude-altitude cross-section averaged along 5 to 10°N.

4.4 Seasonal mean latitude-altitude cross-section of F_{ALT} during the ASM (JJAS) for the longitude band of 80 to 90°E. Same as Figure 4.3(a), but projected on the geographical map.

4.5 Seasonal mean wind speed and direction during ASM (JJAS) of 2006 to 2010 at 200 hPa level (obtained from) MERRA data.

4.6 Horizontal slices of the seasonal mean frequency of occurrence of clouds at 1 km, 5 km and 12 km during ASM (JJAS) of 2006 to 2010 derived from CloudSat data.

4.7 Same as Figure 4.3(a), but for the multi-year mean F_{ALT} (averaged in the longitude band of 80 to 90°E) during June, July, August and September months (average for 2006 to 2010).

4.8 Long-term (1996 to 2010) average of (a) seasonal mean precipitation rate (GPCP data) and (b) OLR during the Asian summer monsoon season.

4.9 Spatial variation in the seasonal mean Sea Surface Temperature during ASM (average of 2006 to 2010) at the study region.

4.10 Spatial variation in the seasonal mean Surface Wind Divergence during ASM (average of 2006 to 2009) over the study region observed using spaceborne scatterometers during ASM.

4.11 (a) Latitude-altitude cross-section of vertical wind during JJAS (1996 to 2010) averaged along 80 to 85°E. The vertical wind is taken from MERRA. Altitude shown is in pressure coordinates. (b) Same as (a), but for longitude-altitude cross-section averaged for 5 to 10°N during JJAS.

4.12 Seasonal mean altitude profiles of regionally averaged latent heating rate (K/h) released by precipitating clouds during JJAS (estimated from TRMM-PR). The regions represent the ‘pool’ (5 to 10°N, 80 to 90°E), and the regions to the west (5 to 10°N, 70 to 80°E), northwest (15 to 20°N, 70 to 80°E), northeast (15 to 20°N, 90 to 100°E), southeast (5°S to 0°, 90 to 100°E) and south (5°S to 0°, 80 to 90°E) of the ‘pool’.

4.13 (a) Latitude-altitude cross section of latent heat rate (K/h) released into the atmosphere by precipitating clouds (estimated from TRMM-PR data) during JJAS (2006 to 2010), averaged in the longitude band of 80 to 85°E. (b) Same as (a) but for the longitude-altitude cross section averaged in the latitude band of 5 to 10°N.

4.14 Long term (2006 to 2010) seasonal mean spatial variations of (a) Lower Tropospheric Stability (K) and (b) CAPE (J/kg) during JJAS, obtained from Reanalysis data.

4.15 Schematic of the proposed mini-circulation embedded in the large scale summer monsoon circulation. The schematic is superimposed on the latitudinal and longitudinal cross-sections of altitude variations of F_{ALT}.

5.1 Multi-year (2006 to 2011) seasonal mean SST during winter (DJF), pre-monsoon (MAM), summer monsoon (JJAS) and post-monsoon (ON). ... 178

5.2 Multi-year (2006 to 2011) seasonal mean vertical distribution of clouds (frequency of occurrence in percentage) in different longitudinal slices seasons. .. 178

5.3 Long term mean (a) Latitude-altitude distribution of the frequency of occurrence of clouds in the longitude belt of 80 to 90°E, and (b) corresponding SST. The vertical bars represent standard deviations. 179

5.4 Number of collocated observations 2BGEOPROF-LIDAR data as a fraction of TMI-SST ... 179

5.5 Altitude distribution of the frequency of occurrence of clouds (in percentage) as a function of SST during 2006 to 2011. 181

5.6 Altitude distribution of the frequency of occurrence of clouds (in percentage) as a function of SST during 2006 to 2011 for different seasons (a) Winter (DJF), (b) Premonsoon (MAM), (c) Summer Monsoon (JJAS) and (d) Postmonsoon (ON). ... 183

5.7 Average frequency of occurrence of clouds for different altitude bands as a function of SST. ... 184

5.8 Variations in the mean frequency of occurrence of clouds with SST for the period of study (2006 to 2011) and for different seasons. Standard deviations for all seasons are represented by vertical bars. Standard deviations for individual seasons are comparable to that for the whole period. ... 185

5.9 (a) Probability distribution function of cloud thickness as a function of SST for clouds having base altitude <4 km. (b) Frequency of occurrence of clouds as a function of cloud thickness (for clouds with base altitude <4 km) for three regimes of SST: SST<27.5°C, 27.5<SST<29°C, and 29<SST<30.5°C. ... 185

5.10 Probability distribution function of SST gradient as a function of SST. 187

5.11 Probability distribution function of (a) SST gradient (b) surface wind divergence and (c) wind divergence at 150 hPa as a function of SST. 188

5.12 Probability distribution function of (a) Lower Tropospheric Stability and (b) CAPE as a function of SST 189

6.1 Time-altitude cross sections of the attenuated backscattered signal (ABS) during 15:00 IST on 3 February to 10:00 IST on 5 February 2009 in (a) Co-Polarized (b) Cross-Polarized channels. (c) shows the corresponding image of Linear Depolarization Ratio. Co- and Cross-polarisation observations are having units: counts.km².µs⁻¹.µJ⁻¹. White bands indicate the duration when the system was not operational. 201

6.2 Same as Figure 6.1 but zoomed to the altitude range of 12 to 18 km. 202
6.3 Time-altitude cross-sections of the attenuated backscattered lidar signal (ABS) in the co-polarised (left) and cross-polarised (right) channels on the nights of 29 March 2008 (top) and 17 April 2008 (bottom). The thick white lines indicate the top and base of the descending cirrus clouds detected using the criteria described in Sections 6.2.2 and 6.2.3.

6.4 Altitude profile of range corrected lidar signal (RCS) in logarithmic scale. The cloud base and top altitudes are denoted by Z_b and Z_t respectively. The RCS values extrapolated from below the cloud base is indicated by the dashed line.

6.5 Multi-year (2008 to 2011) monthly mean frequency of occurrence (%) of cirrus over Thiruvananthapuram. Vertical bars indicate standard deviations.

6.6 Multi-year (2008 to 2011) annual and seasonal mean (Winter-DJF, Pre-monsoon-MAM, Summer monsoon-JJAS, Post-monsoon-ON) altitude profiles of (a) frequency of occurrence of cirrus, (b) cloud optical depth, (c) cloud thickness and (d) LDR.

6.7 Seasonal mean variation of COD. Standard deviations are represented by the vertical bars.

6.8 Scatter plots showing (a) CT versus COD and (b) COD versus LDR during different seasons.

6.9 Seasonal mean frequency of occurrence (%) of total, descending and ascending cirrus clouds during winter (DJF), pre-monsoon (MAM), summer monsoon (JJAS) and post-monsoon (ON) seasons.

6.10 Distribution of the frequency of occurrence of the altitude of (a) cirrus-base and (b) cirrus-top before and after descent. Probability distribution function (PDF) for altitude before descent of the cirrus clouds versus altitude after descent for (c) cloud-base and (d) cloud top.

6.11 (a) Probability distribution function for downward displacement of cloud base versus that for cloud top for descending cirrus clouds. (b) Frequency distribution of displacement of cloud base and top.

6.12 Histogram of duration of descend.

6.13 Probability distribution function for duration of descending versus speed of descending for (a) cloud top and (b) cloud base.

6.14 (a) Histogram of the cloud optical depth for descending cirrus clouds. (b) Probability distribution of cloud optical depth (COD) versus duration for clouds which descend.

6.15 Probability distribution for cloud optical depth versus speed of descending for (a) cloud top, and (b) cloud base.

6.16 (a) Top of the atmosphere (TOA) longwave cloud radiative forcing (LWCRF in Wm$^{-2}$) at different altitude ranges (b) Change in LWCRF due to descending of cirrus having cloud top altitude of 15 km before descent, plotted as a function of cloud optical depth versus downward displacement. COD is assumed to be invariant during descending.
7.1 Regional distribution of seasonal mean LWCRF, SWCRF and NCRF at TOA (diurnally averaged) over the Indian subcontinent and the surrounding oceans during July to September period of 2012. The patches indicates the region where the CRF could not be estimated due to want of clear-sky pixels in all time bins. 237

7.2 Seasonal mean diurnal variation of LWCRF obtained by averaging the seasonal mean LWCRF at 3 hourly intervals (local time indicated at the top of each figure) for the ‘equivalent day’ of the summer monsoon season. The patches indicate data gaps in the estimated LWCRF due to the absence of clear-sky reference pixels. 239

7.3 Seasonal mean LWCRF averaged during (a) day time (08 to 16 LT) and (b) nighttime (20 to 04 LT) of the summer monsoon season. (c) The difference between daytime and night time values of LWCRF (LWCRF_{Day} – LWCRF_{Night}) 240

7.4 Variations in the NCRF during the daytime (08 to 16 LT) and nighttime (20 to 04 LT) during the summer monsoon season of 2012. 242

7.5 Spatial distributions of the seasonal mean LWCRF, SWCRF and NCRF (diurnally averaged) over the Indian subcontinent and the surrounding oceans during the post-monsoon season (October and November) of 2012. Patches indicate the regions where the CRF could not be estimated due to the absence of clear-sky pixels in all time bins. 244

7.6 3-hourly seasonal mean LWCRF obtained from the ‘equivalent day’ analysis during the post-monsoon season of 2012. 245

7.7 Seasonal mean LWCRF during the daytime (08 to 16 LT) and nighttime (20 to 04 LT) and the day-night differences during the post-monsoon season. 246

7.8 Seasonal mean NCRF during the daytime (08 to 16 LT) and nighttime (20 to 04 LT) for the post-monsoon season of 2012. 247

7.9 Long-term (2006 to 2011) seasonal mean latitude-altitude cross sections of the latent heating rate (LHR, in units of K/h) by precipitating clouds during the winter season. The latitude variations of LHR are averaged at 10° longitude bands, from 30°E to 110°E. 248

7.10 Same as Figure 7.9, but for the pre-monsoon season. 250

7.11 Same as Figure 7.9, but for the summer monsoon season. 252

7.12 Same as Figure 7.9, but for the post-monsoon season. 254

7.13 (a,b) Spatial variation of the long-term seasonal mean cloudiness during winter season and summer monsoon seasons. The selected regions for which the altitude profiles are given in (c) and (d) are indicated in (a) and (b). Altitude profiles of the regional mean LHR at selected regions during (c) winter season and (d) summer monsoon seasons. 257
List of Tables

2.1 Summary of the satellite data used in the present study 63
2.2 Summary of the ground based data used in the present study 63
2.3 Orbital characteristics of CloudSat .. 64
2.4 Specifications of CloudSat-Cloud Profiling Radar 64
2.5 Specifications of CALIPSO-CALIOP. (The orbital characteristics are same as that for CloudSat given in Table 2.3). 71
2.6 General characteristics of NOAA-AVHRR. ... 74
2.7 Orbital characteristics of the Megha-Tropiques satellite. 77
2.8 Characteristics of ScaRaB ... 79
2.9 Features of the MPL system at Thumba. .. 86

6.1 Frequency of occurrence of cirrus (%): classification based on COD. 214