CONTENT

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Chapter</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1–8</td>
</tr>
<tr>
<td>2.</td>
<td>Review of Literature</td>
<td>9–35</td>
</tr>
<tr>
<td>3.</td>
<td>Material and Methods</td>
<td>36–47</td>
</tr>
<tr>
<td>5.</td>
<td>Discussion</td>
<td>99–106</td>
</tr>
<tr>
<td>7.</td>
<td>Reference</td>
<td>110–137</td>
</tr>
</tbody>
</table>
CONTENTS OF TABLES

Table 1: Seed germination percentage, seed vigour, mean germination frequency, seedling survival percentage of different crops.

Table 2: Relative seed germination (RSG), relative seed vigour percentage (RSVP), relative mean germination frequency (RMGF) and relative seedling survival percentage (RSSP) of different crops.

Table 3A: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Luffa cylindrica* L. on exposure to simulated acid rain of pH 5.6-2.5 at 30th day.

Table 3B: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Luffa cylindrica* L. on exposure to simulated acid rain of pH 5.6-2.5 at 45th day.

Table 3C: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Luffa cylindrica* L. on exposure to simulated acid rain of pH 5.6-2.5 at 60th day.

Table 3D: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Luffa cylindrica* L. on exposure to simulated acid rain of pH 5.6-2.5 at 75th day.
 CONTENTS OF TABLES

Table 1: Seed germination percentage, seed vigour, mean germination frequency, seedling survival percentage of different crops.

Table 2: Relative seed germination (RSG), relative seed vigour percentage (RSVP), relative mean germination frequency (RMGF) and relative seedling survival percentage (RSSP) of different crops.

Table 3A: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of Luffa cylindrica L. on exposure to simulated acid rain of pH 5.6-2.5 at 30th day.

Table 3B: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of Luffa cylindrica L. on exposure to simulated acid rain of pH 5.6-2.5 at 45th day.

Table 3C: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of Luffa cylindrica L. on exposure to simulated acid rain of pH 5.6-2.5 at 60th day.

Table 3D: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of Luffa cylindrica L. on exposure to simulated acid rain of pH 5.6-2.5 at 75th day.
Table 4A: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Lagenaria siceraria* L. on exposure to simulated acid rain of pH 5.6-2.5 at 30th day.

Table 4B: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Lagenaria siceraria* L. on exposure to simulated acid rain of pH 5.6-2.5 at 45th day.

Table 4C: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Lagenaria siceraria* L. on exposure to simulated acid rain of pH 5.6-2.5 at 60th day.

Table 4D: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Lagenaria siceraria* L. on exposure to simulated acid rain of pH 5.6-2.5 at 75th day.

Table 5A: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Citrullus lanatus* L. on exposure to simulated acid rain of pH 5.6-2.5 at 30th day.

Table 5B: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Citrullus lanatus* L. on exposure to simulated acid rain of pH 5.6-2.5 at 45th day.
Table 5C: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Citrullus lanatus* L. on exposure to simulated acid rain of pH 5.6-2.5 at 60th day.

Table 5D: Growth response in terms of root length, shoot length, fresh and dry weight (g) of root and shoot, number of leaves and leaf area of *Citrullus lanatus* L. on exposure to simulated acid rain of pH 5.6-2.5 at 75th day.

Table 6A: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Luffa cylindrica* L. on 30th day.

Table 6B: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Luffa cylindrica* L. on 45th day.

Table 6C: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Luffa cylindrica* L. on 60th day.

Table 6D: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Luffa cylindrica* L. on 75th day.
Table 7A: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Lagenaria siceraria* L. on 30th day.

Table 7B: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Lagenaria siceraria* L. on 45th day.

Table 7C: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Lagenaria siceraria* L. on 60th day.

Table 7D: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Lagenaria siceraria* L. on 75th day.

Table 8A: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Citrullus lanatus* L. on 30th day.

Table 8B: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Citrullus lanatus* L. on 45th day.
Table 8C: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Citrullus lanatus* L. on 60th day.

Table 8D: Shoot weight ratio (SWR), root weight ratio (RWR), shoot root ratio (SRR), growth index (GI), net primary productivity (NPP) and phytotoxicity percentage (PP) variously derived from shoot and root of *Citrullus lanatus* L. on 75th day.

Table 9A: Tolerance index (TI), relative water content (RWC), response coefficient (RC) of shoot and root in three crops of cucurbitaceae exposed to simulated acid rain on 30th day.

Table 9B: Tolerance index (TI), relative water content (RWC), response coefficient (RC) of shoot and root in three crops of cucurbitaceae exposed to simulated acid rain on 45th day.

Table 9C: Tolerance index (TI), relative water content (RWC), response coefficient (RC) of shoot and root in three crops of cucurbitaceae exposed to simulated acid rain on 60th day.

Table 9D: Tolerance index (TI), relative water content (RWC), response coefficient (RC) of shoot and root in three crops of cucurbitaceae exposed to simulated acid rain on 75th day.

Table 10A: Number of stomata on 75th day in three crops of cucurbitaceae exposed to acid rain.
Table 10B: Stomatal response in term of stomatal index, stomatal density and stomatal coverage area of both abaxial and adaxial surfaces in *Luffa cylindrica* L. (age, 75d) exposed to different acid rain pH.

Table 10C: Stomatal response in term of stomatal index, stomatal density and stomatal coverage area of both abaxial and adaxial surfaces in *Lagenaria siceraria* L. (age, 75d) exposed to different acid rain pH.

Table 10D: Stomatal response in term of stomatal index, stomatal density and stomatal coverage area of both abaxial and adaxial surfaces in *Citrullus lanatus* L. (age, 75d) exposed to different acid rain pH.

Table 11A: Leaf extract pH and Chlorophyll content (mg/g f.wt) in leaves of *Luffa cylindrica* L., *Lagenaria siceraria* L., and *Citrullus lanatus* L. on 30th day of exposed to different acid rain pH.

Table 11B: Leaf extract pH and Chlorophyll content (mg/g f.wt) in leaves of *Luffa cylindrica* L., *Lagenaria siceraria* L., and *Citrullus lanatus* L. on 45th day of exposed to different acid rain pH.

Table 11C: Leaf extract pH and Chlorophyll content (mg/g f.wt) in leaves of *Luffa cylindrica* L., *Lagenaria siceraria* L., and *Citrullus lanatus* L. on 60th day of exposed to different acid rain pH.

Table 11D: Leaf extract pH and Chlorophyll content (mg/g f.wt) in leaves of *Luffa cylindrica* L., *Lagenaria siceraria* L., and *Citrullus lanatus* L. on 75th day of exposed to different acid rain pH.
Table 12A: Yield and their contributing characters in response to different simulated acid rain pH of three crops of cucurbitaceae.

Table 12B: Harvest index in response to different simulated acid rain pH of three crops of cucurbitaceae.
LEGENDS OF FIGURES

Figure 1: Seed germination action index in different crops of cucurbitaceae raised from the pre-soaked seeds with simulated acid rain of pH 4.5, 3.5 and 2.5.

Figure 2: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Luffa cylindrica of treated with different pH of simulated acid rain.

Figure 3: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Lagenaria siceraria of treated with different pH of simulated acid rain.

Figure 4: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Citrullus lanatus of treated with different pH of simulated acid rain.

Figure 5: Changes in fresh weight (g) of Luffa cylindrica in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 6: Changes in fresh weight (g) of Lagenaria siceraria in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 7: Changes in fresh weight (g) of Citrullus lanatus in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 8: Dry weight (g) of 30, 45, 60 and 75d old Luffa cylindrica in after exposure to 5.6, 4.5, 3.5 and 2.5 pH of simulated acid rain.
LEGENDS OF FIGURES

Figure 1: Seed germination action index in different crops of cucurbitaceae raised from the pre-soaked seeds with simulated acid rain of pH 4.5, 3.5 and 2.5.

Figure 2: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Luffia cylindrica of treated with different pH of simulated acid rain.

Figure 3: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Lagenaria siceraria of treated with different pH of simulated acid rain.

Figure 4: Growth response in terms of total plant length (cm) at the age of 30, 45 and 60, 75d Citrullus lanatus of treated with different pH of simulated acid rain.

Figure 5: Changes in fresh weight (g) of Luffia cylindrica in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 6: Changes in fresh weight (g) of Lagenaria siceraria in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 7: Changes in fresh weight (g) of Citrullus lanatus in response to different pH of simulated acid rain after 30, 45, 60 and 75d.

Figure 8: Dry weight (g) of 30, 45, 60 and 75d old Luffia cylindrica in after exposure to 5.6, 4.5, 3.5 and 2.5 pH of simulated acid rain.
Figure 9: Dry weight (g) of 30, 45, 60 and 75d old *Lagenaria siceraria* in after exposure to 5.6, 4.5, 3.5 and 2.5 pH of simulated acid rain.

Figure 10: Dry weight (g) of 30, 45, 60 and 75d old *Citrullus lanatus* in after exposure to 5.6, 4.5, 3.5 and 2.5 pH of simulated acid rain.

Figure 11: Effect of simulated acid rain on stomatal index of leaves of different crops on (adaxial surface) in 75d old plants.

Figure 12: Effect of simulated acid rain on stomatal index of leaves of different crops on (abaxial surface) in 75d old plants.

Figure 13: Economic yield of different crops exposure to simulated acid rain.

Figure 14: Harvest Index of different crops exposure to simulated acid rain.