CHAPTER 4
BURR TYPE XII SOFTWARE RELIABILITY

4.1 Introduction

Software reliability is one of the most important characteristics and is a key part in software quality. Its measurement and management technologies employed during the software life cycle are essential for producing and maintaining quality/reliable software systems. Software reliability is the probability that given software functions without failure in a given environmental condition during a specified time. That is it is the probability of failure-free execution of the software for a specified time in a specified environment. Software reliability can be improved by increasing the testing effort and by correcting detected faults. Reliability tends to change continuously during testing due to the addition of problems in new code or to the removal of problems by debugging errors. There are two important parts to provide reliability: fault detection and fault isolation. The design has to consider both aspects. Since performance requirements influence the selection of data structures and algorithms, it is important to check performance factors at the design phase.

To estimate the performance of the design, the information on usage pattern, design structure, and installation characteristics are needed. The specifications describe the level and what security looks like while design considers its implementation. So, good engineering methods can largely improve software reliability. The study of software reliability can be categorized into three parts: modelling, measurement and improvement. Software reliability modelling has matured to the point that meaningful results can be obtained by applying suitable models to the problem. There are many models exist, one of the well-known and simplest model is our Burr type XII model.

There exist several software reliability growth models which can be used during the testing phase of the software development process to estimate the software reliability. Most software reliability models contain the following parts: assumptions, factors, and a mathematical function that relates the reliability with the factors. The mathematical function is usually higher order exponential or
logarithmic. Software modelling techniques can be divided into two subcategories: prediction modelling and estimation modelling. Both kinds of modelling techniques are based on observing and accumulating failure data and analyzing with statistical inference.

The content of this chapter is published in the following journal.

4.2 Model Formulation

Software reliability models can be classified according to probabilistic assumptions. When a Markov process represents the failure process; the resultant model is called Markovian Model. Second one is fault counting model which describes the failure phenomenon by stochastic process like Homogeneous Poisson Process (HPP), Non Homogeneous Poisson Process (NHPP) and Compound Poisson Process etc. A majority of failure count models are based upon NHPP described in the following lines.

A software system is subjected to failures at random times caused by errors present in the system. Let \{N(t), t > 0\} be a counting process representing the cumulative number of failures by time ‘t’. Since there are no failures at t=0 we have

\[N(0) = 0 \]

It is to assume that the number of software failures during non-overlapping time intervals do not affect each other. In other words, for any finite collection of times \(t_1 < t_2 < ... < t_n \). The ‘n’ random variables \((t_i), \{N(t_2) - N(t_1)\}, ... \{N(t_n) - N(t_{n-1})\} \) are independent. This implies that the counting process \{N(t), t>0\} has independent increments.

Let \(m(t) \) represents the expected number of software failures by time ‘t’. The mean value function \(m(t) \) is finite valued, non-decreasing, non-negative and bounded with the boundary conditions.
\[m(t) = \begin{cases}
0, & t = 0 \\
0, & t \to \infty
\end{cases} \]

Where ‘a’ is the expected number of software errors to be eventually detected.

Suppose \(N(t) \) is known to have a Poisson probability mass function with parameters \(m(t) \) i.e.,

\[P\{N(t) = n\} = \frac{[m(t)]^n e^{-m(t)}}{n!}, n = 0, 1, 2 \ldots \infty \]

then \(N(t) \) is called an NHPP. Thus the stochastic behavior of software failure phenomena can be described through the \(N(t) \) process. Various time domain models have appeared in the literature (Kantam and Subbarao, 2009) which describe the stochastic failure process by an NHPP which differ in the mean value function \(m(t) \).

The proposed mean value function \(m(t) \) of Burr Type XII model is given by

\[m(t) = a \left[1 - (1 + t^c)^{-b} \right] \quad \text{(4.2.1)} \]

Where \([m(t)/a] \) is the cumulative distribution function of Burr type XII distribution for the present choice.

\[p\{N(t) = n\} = \frac{[m(t)]^n e^{-m(t)}}{n!} \]

\[\lim_{n \to \infty} P\{N(t) = n\} = \frac{e^{-a}a^n}{n!} \]

This is also a Poisson model with mean ‘a’.

Let \(N(t) \) be the number of errors remaining in the system at time ‘t’.

\[N(t) = N(\infty) - N(t) \]

\[E[N(t)] = E[N(\infty)] - E[N(t)] \]

\[= a - m(t) \]

\[= a - a \left[1 - (1 + t^c)^{-b} \right] \]

\[= a \left(1 + t^c \right)^{-b} \]
Let S_k be the time between $(k−1)^{th}$ and k^{th} failure of the software product. Let X_k be the time up to the k^{th} failure. Let us find out the probability that time between $(k−1)^{th}$ and k^{th} failures, i.e., S_k exceeds a real number ‘s’ given that the total time up to the $(k−1)^{th}$ failure is equal to x.

\[
\text{i.e., } P[S_k > \frac{s}{X_{k-1}} = x]
\]

\[
R S_k/X_{k-1}(s/x) = e^{-[m(x+s)−m(s)]}
\]

(4.2.2)

This Expression is called Software Reliability.

4.3 Illustrating the Maximum Likelihood Estimation

The parameters ‘a’, ‘b’ and ‘c’ are estimated by using Maximum Likelihood method and the values can be computed using iterative method for the given cumulative interval domain data. Using the estimators of ‘a’, ‘b’ and ‘c’ we can compute $m(t)$.

Mathematical derivation for parameter estimation

We propose to access the software reliability based on Burr Type XII distribution model. The Burr distribution has a flexible shape and controllable scale and location which makes it appealing to fit to data. It is frequently used to model insurance claim sizes (Hee-cheul Kim, 2013). The mean value function and intensity function of Burr Type XII NHPP model are as follows.

The Cumulative distribution function (CDF) is given by

\[
m(t) = \int_0^1 \lambda(t) dt = a \left[1 - \left(1 + \frac{t^c}{b} \right)^{-b} \right]
\]

\[
= a F(t)
\]

The Probability Density Function (PDF) of Burr XII distribution are given, respectively by

\[
\lambda(t) = a \left[\frac{cbf^{-1}}{(1 + t^c)^{b+1}} \right] = a f(t)
\]
Where \(t > 0 \), \(a > 0 \), \(b > 0 \) and \(c > 0 \) denote the expected number of faults that would be detached given infinite testing time in case of finite failure NHPP models. In order to have an assessment of the software reliability, \(a \), \(b \) and \(c \) are unknown parameters and estimated by using Newton Raphson method. Expressions are now delivered for estimating ‘a’, ‘b’ and ‘c’ for the Burr type XII model.

The Log Likelihood function of Interval domain data is given by:

\[
\log L = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i)^{-b} \right] \right) - m(t_i)
\]

Take the mean value function of Burr Type XII is of the form

\[
m(t) = a \left[1 - (1 + t^c)^{-b} \right]
\]

By substituting Equation (4.3.2) in the above Equation (4.3.1), we get

\[
\log L = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i)^{-b} \right] \right) - a \left[1 - (1 + t_i^c)^{-b} \right] = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i^c)^{-b} \right] \right) - a \left[1 - (1 + t_i^c)^{-b} \right]
\]

\[
\log L = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i^c)^{-b} \right] \right) - a \left[1 - (1 + t_i^c)^{-b} \right] = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i^c)^{-b} \right] \right) - a \left[1 - (1 + t_i^c)^{-b} \right]
\]

The parameter ‘a’ is estimated by taking the partial derivative of \(\log L \) w.r.t ‘a’ and equating to ‘0’. (i.e., \(\frac{\partial \log L}{\partial a} = 0 \))

\[
\frac{\partial \log L}{\partial a} = \sum_{i=1}^{k} \left(n_i - a \left[1 - (1 + t_i^c)^{-b} \right] \right) - a \left[1 + (1 + t_i^c)^{-b} \right] = 0
\]
By simplifying the Equation (4.3.3), we get

\[\sum_{i=1}^{k} (n_i - n_{i-1}) \frac{1 + t_i^c}{a} = 1 - (1 + t_i^c)^{-b} \]

\[\therefore a = \sum_{i=1}^{k} (n_i - n_{i-1}) \frac{(1 + t_i^c)^b}{(1 + t_i^c)^b - 1} \quad (4.3.4) \]

By simplifying the Equation (4.3.3), we get

\[\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \left\{ \log a + \log \left[\frac{1 + t_i^c}{(1 + t_i^c)^b} \right] - a + a \left(1 + t_i^c\right)^b \right\} \]

\[\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \left\{ \log a + \frac{1}{(1 + t_i^c)^b} - \frac{1}{(1 + t_i^c)^b} \right\} - a + a \left(1 + t_i^c\right)^b \]

\[\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \left\{ \log a + \log \left[\frac{1 + t_i^c}{(1 + t_i^c)^b} \right] - b \log(1 + t_{i-1}^c) - b \log(1 + t_i^c) \right\} - a + a \left(1 + t_i^c\right)^b \]

The parameter ‘b’ is estimated by using Newton Raphson iterative Method

\[b_{n+1} = b_n - \frac{g(b_n)}{g'(b_n)}, \text{ which is substituted in finding ‘a’. Where } g'(b) \text{ and } g(b) \text{ are expressed as follows.} \]

Taking the Partial derivative of Log L w.r.t ‘b’ and equating to ‘0’.

\[\frac{\partial \log L}{\partial b} = 0 \]

\[\frac{\partial \log L}{\partial b} = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[-\log(t_i^c) + \log(t_{i-1}^c) \right] + \frac{\left\{ (1 + t_i^c)^b \log(1 + t_i^c) - (1 + t_{i-1}^c)^b \log(1 + t_{i-1}^c) \right\}}{(1 + t_i^c)^b - (1 + t_{i-1}^c)^b} \]

\[a \frac{1}{(1 + t_i^c)^b} \log \frac{1}{(1 + t_i^c)^b} \]
Substituting Equation (4.3.4) in the above equation, we get

\[
\frac{\partial \log L}{\partial b} = \sum_{i=1}^{k} (n_i - \hat{n}_i) \left[-\log (1 + t_i^c) - \log (1 + t_i^s) + \left\{ \frac{(1 + t_i^c)^b \log (1 + t_i^c) - (1 + t_i^s)^b \log (1 + t_i^s)}{(1 + t_i^c)^b - (1 + t_i^s)^b} \right\} \right] + \sum_{i=1}^{k} (n_i - \hat{n}_i) \left(1 + t_i^c \right)^b \frac{1}{(1 + t_i^c)^b - 1} \left(1 + t_i^s \right)^b \cdot \log \frac{1}{1 + t_i^s}
\]

Let \(c=1 \), we get

\[
\frac{\partial \log L}{\partial b} = g(b) = \sum_{i=1}^{k} (n_i - \hat{n}_i) \left[-\log (t_i - 1) - \log (t_i + 1) + \frac{(t_i + 1)^b \log (t_i + 1) - (t_i - 1)^b \log (t_i - 1)}{(t_i + 1)^b - (t_i - 1)^b} \right] + \left[\frac{1}{(t_i + 1)^b - 1} \log \left(\frac{1}{1 + t_i} \right) \right]
\]

\[
g(b) = \frac{\partial \log L}{\partial b} = 0
\]

\[
\frac{\partial^2 \log L}{\partial b^2} = g''(b) = \sum_{i=1}^{k} (n_i - \hat{n}_i) \left[\left\{ \frac{1}{(t_i + 1)^b - 1} \log \left(\frac{1}{1 + t_i} \right) \right\} \right]
\]

(4.3.5)

Again taking the Partial derivative of \(g(b) \) w.r.t \('b\) and equating to ‘0’.

\[
g'(b) = \frac{\partial^2 \log L}{\partial b^2} = 0
\]
The parameter 'c' is estimated using Newton Raphson iterative Method

\[c_{n+1} = c_n - \frac{g(c_n)}{g'(c_n)} \]

Where \(g(c) \) and \(g'(c) \) are expressed as follows.

\[g(c) = \frac{\partial \log L}{\partial c} = 0 \]

\[\log L = \sum_{i=1}^{k} \left(n_i - n_{i-1} \right) \left[\log a + \log \left(1 + t_i \right)^b - \left(1 + t_i \right)^b \left(1 + t_i \right)^b - b \log \left(1 + t_i \right) - b \log \left(1 + t_i \right) \right] - a + a \left(1 + t_i \right)^b \]
\[
\frac{\partial \text{LogL}}{\partial c} = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[-\frac{b}{(1 + t_{i-1}^{c})} \cdot t_{i-1}^{c} \cdot \log t_{i-1} - \frac{b}{(1 + t_{i}^{c})} t_{i}^{c} \cdot \log t_{i} + \right. \\
\left. \frac{1}{(1 + t_{i}^{c}) - (1 + t_{i-1}^{c})} b \left(1 + t_{i}^{c}\right)^{b-1} t_{i}^{c} \log t_{i} - b \left(1 + t_{i-1}^{c}\right)^{b-1} t_{i-1}^{c} \log t_{i-1} \\
- 0 + a(-b) \left(1 + t_{k}^{c}\right)^{-(b+1)} t_{k}^{c} \log t_{k} \right]
\]

Substituting Equation (4.3.4) in the above equation, we get

\[
\frac{\partial \text{LogL}}{\partial c} = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[-\frac{b}{(1 + t_{i-1}^{c})} \cdot t_{i-1}^{c} \cdot \log t_{i-1} - \frac{b}{(1 + t_{i}^{c})} t_{i}^{c} \cdot \log t_{i} + \right. \\
\left. \frac{1}{(1 + t_{i}^{c}) - (1 + t_{i-1}^{c})} b \left(1 + t_{i}^{c}\right)^{b-1} t_{i}^{c} \log t_{i} - b \left(1 + t_{i-1}^{c}\right)^{b-1} t_{i-1}^{c} \log t_{i-1} \\
- \sum_{i=1}^{k} (n_i - n_{i-1}) \frac{(1 + t_{i}^{c})^{b}}{(1 + t_{k}^{c})^{b} - 1} \frac{1}{(1 + t_{k}^{c})^{(b+1)}} t_{k}^{c} \log t_{k} \right]
\]

Again substitute b=1, we get

\[
\frac{\partial \text{LogL}}{\partial c} = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[-\log t_{i-1} \cdot t_{i-1}^{c} \cdot \log t_{i-1} - \log t_{i} \cdot t_{i}^{c} \cdot \log t_{i} + \right. \\
\left. \frac{1}{(t_{i}^{c} - t_{i-1}^{c})} t_{i}^{c} \log t_{i} - t_{i-1}^{c} \log t_{i-1} \right] \\
- \sum_{i=1}^{k} (n_i - n_{i-1}) \frac{1}{(1 + t_{k}^{c})} \log t_{k}
\]

\[
\frac{\partial \text{LogL}}{\partial c} = g(c) = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[-\log t_{i-1} \cdot t_{i-1}^{c} \cdot \log t_{i-1} - \log t_{i} \cdot t_{i}^{c} \cdot \log t_{i} + \right. \\
\left. \frac{t_{i}^{c} \log t_{i} - t_{i-1}^{c} \log t_{i-1}}{(t_{i}^{c} - t_{i-1}^{c})} \right] \\
- \sum_{i=1}^{k} (n_i - n_{i-1}) \frac{\log t_{k}}{(1 + t_{k}^{c})}
\] (4.3.7)
Taking the partial derivative again w.r.t ‘c’ and equating to ‘0’.

\[g'(c) = \frac{\partial^2 \log L}{\partial c^2} = 0 \]

\[
\frac{\partial^2 \log L}{\partial c^2} = g'(c) = \sum_{i=1}^{k}(n_i - n_{i-1}) \left[\frac{\log \left(\frac{t_{i-1}}{t_i} \right) \frac{t_i^c}{t_{i-1}^c} \{\log t_i - \log t_{i-1}\}}{\{\log t_i - \log t_{i-1}\}^2} - \frac{t_i^c}{(1 + t_i^c)^2} \right] + \sum_{i=1}^{k}(n_i - n_{i-1})(\log t_k)^2 \frac{t_k^c}{(1 + t_k^c)^2}
\]

(4.3.8)

4.4 Data Analysis

Datasets Phase 1 and Phase 2 from Pham (2005)

A set of failure data taken from Pham (2005) given in Table 4.4.1 and 4.4.2.

Datasets Release #1, #2, #3 and #4 from Alan Wood Tandem Computers (1996)

A set of failure data taken from Wood (1996) given in Table 4.4.3 to 4.4.6 consists of the observation time(week), CPU Hours and the number of failures detected per week :defects found.
<table>
<thead>
<tr>
<th>Week Index</th>
<th>Exposure Time (cum. System test hours)</th>
<th>Fault</th>
<th>Cumulative Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>356</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>712</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1068</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1424</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1780</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2136</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2492</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2848</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3204</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>3560</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>3916</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>4272</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>4628</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>4984</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>5340</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>5696</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>6052</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>6408</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>6764</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>7120</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>7476</td>
<td>2</td>
<td>26</td>
</tr>
</tbody>
</table>
Table 4.4.2. Phase 2 System Test data Pham (2005)

<table>
<thead>
<tr>
<th>Week Index</th>
<th>Exposure Time (cum. System test hours)</th>
<th>Fault</th>
<th>Cumulative Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>416</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>832</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1248</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1664</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2080</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>2496</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>2912</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>3328</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>3744</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>4160</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>4576</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>4992</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>5408</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>5824</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>6240</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>6656</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>7072</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>18</td>
<td>7488</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>19</td>
<td>7904</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>8320</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>21</td>
<td>8736</td>
<td>1</td>
<td>43</td>
</tr>
</tbody>
</table>
Table 4.4.3. Data Set Release #1 (Alan Wood Tandem Computers -1996)

<table>
<thead>
<tr>
<th>Test Week</th>
<th>CPU Hours</th>
<th>Percent CPU Hours</th>
<th>Defects Found</th>
<th>Predicted Total Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>519</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>968</td>
<td>-</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1,430</td>
<td>-</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1,893</td>
<td>-</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2,490</td>
<td>-</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3,058</td>
<td>-</td>
<td>49</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3,625</td>
<td>-</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>4,422</td>
<td>-</td>
<td>58</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5,218</td>
<td>-</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>5,823</td>
<td>58</td>
<td>75</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>6,539</td>
<td>65</td>
<td>81</td>
<td>107</td>
</tr>
<tr>
<td>12</td>
<td>7,083</td>
<td>71</td>
<td>86</td>
<td>116</td>
</tr>
<tr>
<td>13</td>
<td>7,487</td>
<td>75</td>
<td>90</td>
<td>123</td>
</tr>
<tr>
<td>14</td>
<td>7,846</td>
<td>78</td>
<td>93</td>
<td>129</td>
</tr>
<tr>
<td>15</td>
<td>8,205</td>
<td>82</td>
<td>96</td>
<td>129</td>
</tr>
<tr>
<td>16</td>
<td>8,564</td>
<td>86</td>
<td>98</td>
<td>134</td>
</tr>
<tr>
<td>17</td>
<td>8,923</td>
<td>89</td>
<td>99</td>
<td>139</td>
</tr>
<tr>
<td>18</td>
<td>9,282</td>
<td>93</td>
<td>100</td>
<td>138</td>
</tr>
<tr>
<td>19</td>
<td>9,641</td>
<td>96</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>20</td>
<td>10,000</td>
<td>100</td>
<td>100</td>
<td>133</td>
</tr>
</tbody>
</table>
Table 4.4.4. Dataset Release #2 (Alan Wood Tandem Computers - 1996)

<table>
<thead>
<tr>
<th>Test Week</th>
<th>CPU Hours</th>
<th>Percent CPU Hours</th>
<th>Defects Found</th>
<th>Predicted Total Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>384</td>
<td>-</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1,186</td>
<td>-</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1,471</td>
<td>-</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2,236</td>
<td>-</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2,772</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2,967</td>
<td>-</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3,812</td>
<td>-</td>
<td>61</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>4,880</td>
<td>-</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>6,104</td>
<td>-</td>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>6,634</td>
<td>65</td>
<td>89</td>
<td>203</td>
</tr>
<tr>
<td>11</td>
<td>7,229</td>
<td>70</td>
<td>95</td>
<td>192</td>
</tr>
<tr>
<td>12</td>
<td>8,072</td>
<td>79</td>
<td>100</td>
<td>179</td>
</tr>
<tr>
<td>13</td>
<td>8,484</td>
<td>83</td>
<td>104</td>
<td>178</td>
</tr>
<tr>
<td>14</td>
<td>8,847</td>
<td>86</td>
<td>110</td>
<td>184</td>
</tr>
<tr>
<td>15</td>
<td>9,253</td>
<td>90</td>
<td>112</td>
<td>184</td>
</tr>
<tr>
<td>16</td>
<td>9,712</td>
<td>95</td>
<td>114</td>
<td>183</td>
</tr>
<tr>
<td>17</td>
<td>10,083</td>
<td>98</td>
<td>117</td>
<td>182</td>
</tr>
<tr>
<td>18</td>
<td>10,174</td>
<td>99</td>
<td>118</td>
<td>183</td>
</tr>
<tr>
<td>19</td>
<td>10,272</td>
<td>100</td>
<td>120</td>
<td>184</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.4.5. Dataset Release #3 (Alan Wood Tandem Computers -1996)

<table>
<thead>
<tr>
<th>Test Week</th>
<th>CPU Hours</th>
<th>Percent CPU Hours</th>
<th>Defects Found</th>
<th>Predicted Total Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>162</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>499</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>715</td>
<td>-</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1,137</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1,799</td>
<td>-</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2,438</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2,818</td>
<td>-</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>3,574</td>
<td>71</td>
<td>54</td>
<td>163</td>
</tr>
<tr>
<td>9</td>
<td>4,234</td>
<td>84</td>
<td>57</td>
<td>107</td>
</tr>
<tr>
<td>10</td>
<td>4,680</td>
<td>93</td>
<td>59</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>4,955</td>
<td>98</td>
<td>60</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>5,053</td>
<td>100</td>
<td>61</td>
<td>84</td>
</tr>
</tbody>
</table>

Table 4.4.6. Dataset Release #4 (Alan Wood Tandem Computers -1996)

<table>
<thead>
<tr>
<th>Test Week</th>
<th>CPU Hours</th>
<th>Percent CPU Hours</th>
<th>Defects Found</th>
<th>Predicted Total Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>254</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>788</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1054</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1393</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2216</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2880</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3593</td>
<td>-</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>4281</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5180</td>
<td>-</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>6003</td>
<td>53</td>
<td>29</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>7621</td>
<td>67</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>8783</td>
<td>78</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>9604</td>
<td>85</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>10064</td>
<td>89</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>10560</td>
<td>93</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>16</td>
<td>11008</td>
<td>97</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>17</td>
<td>11237</td>
<td>99</td>
<td>41</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>11243</td>
<td>99</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>19</td>
<td>11305</td>
<td>100</td>
<td>42</td>
<td>52</td>
</tr>
</tbody>
</table>
4.5 Method of Performance Analysis

The performance of SRGM is judged by its ability to fit the software failure data. The term goodness of fit denotes the question of “How good does a mathematical model fit to the data?” In order to validate the model under study and to assess its performance, experiments on a set of actual software failure data have been performed. The performance evaluation of software reliability growth model is generally measured with sum of square errors (SSE) and correlation index of regression curve equation (R-square). Among them, the model performance is better when SSE is smaller and R-square is close to 1.

SSE is used to describe the distance between actual and estimated number of faults detected totally, which is defined as

\[SSE = \sum_{i=1}^{n} (y_i - m(t_i))^2 \]

Where \(n \) denotes the number of failure samples in failure data set, \(y_i \) denotes the number of faults observed to the moment \(t_i \), and \(m(t_i) \) denotes the estimated number of faults detected to the time \(t_i \) according to the proposed model. The model can provide a better goodness-of-fit when the value of SSE is smaller.

The equation of calculating the value R-square is written as:

\[R - square = \frac{\sum_{i=1}^{n} (\bar{y} - m(t_i))^2}{\sum_{i=1}^{n} (\bar{y} - y_i)^2} \]

Where \(\bar{y} \) denotes the mean value of faults detected. The model can provide a better goodness-of-fit when the value of R-square is close to 1.

Solving equations in Section 4.3 by Newton Raphson Method (N-R) method for all the data sets, the iterative solutions for MLEs of a, b, c and the reliabilities of given software failure datasets are shown in Table 4.5.1.

The estimator of the Reliability function from the Equation (4.2.2) at any time \(x \) is given by
\[R S_k/X_{k-1}(s/x) = e^{-[m(x+s) - m(s)]} \]

(i) The Reliability of the Phase 1 System Test data is given by

\[
R S_{12}/X_{11}(7476/50) = e^{-[m(50+7476) - m(7476)]} \\
= e^{-[m(7526) - m(7476)]} \\
= e^{-[25.99202697 - 25.99201268]} \\
= e^{-[1.42921E-05]} \\
= 0.999985708
\]

(ii) The Reliability of the Phase 2 System Test data is given by

\[
R S_{5}/X_{4}(8736/50) = e^{-[m(50+8736) - m(8736)]} \\
= e^{-[m(8786) - m(8736)]} \\
= e^{-[41.58771804 - 41.58770144]} \\
= e^{-[1.66063E-05]} \\
= 0.999983394
\]

(iii) The Reliability of the Release #1 System Test data is given by

\[
R S_{12}/X_{11}(10000/50) = e^{-[m(50+10000) - m(10000)]} \\
= e^{-[m(10050) - m(10000)]} \\
= e^{-[87.52816482 - 87.52813803]} \\
= e^{-[2.67897E-05]} \\
= 0.999973211
(iv) The Reliability of the Release #2 System Test data is given by

\[RS_{14}/X_{13}(10272/50) = e^{-[m(50+10272) - m(10272)]} \]

\[= e^{-[m(10322) - m(10272)]} \]

\[= e^{-[111.7720845 - 111.7720517]} \]

\[= e^{-[3.28612E-05]} \]

\[= 0.999967139. \]

(v) The Reliability of the Release #3 System Test data is given by

\[RS_{9}/X_{8}(5053/50) = e^{-[m(50+5053) - m(5053)]} \]

\[= e^{-[m(5103) - m(5053)]} \]

\[= e^{-[59.36639277 - 59.36629509]} \]

\[= e^{-[9.76777E-05]} \]

\[= 0.999902327. \]

(vi) The Reliability of the Release #4 System Test data is given by

\[RS_{9}/X_{8}(11305/50) = e^{-[m(50+11305) - m(11305)]} \]

\[= e^{-[m(11355) - m(11305)]} \]

\[= e^{-[42.82880885 - 42.8287985]} \]

\[= e^{-[1.0344E-05]} \]

\[= 0.999989656 \]
Table 4.5.1. Parameter Estimations and Reliabilities of the Software Failure data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>No. Of Samples</th>
<th>Estimated Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Pham (2005) Phase 1 Data</td>
<td>21</td>
<td>25.994042</td>
<td>0.978993</td>
</tr>
<tr>
<td>Pham (2005) Phase 2 Data</td>
<td>21</td>
<td>41.590454</td>
<td>0.978993</td>
</tr>
<tr>
<td>Wood (1996) Release #1</td>
<td>20</td>
<td>87.533224</td>
<td>0.978352</td>
</tr>
<tr>
<td>Dataset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood (1996) Release #2</td>
<td>19</td>
<td>111.77847</td>
<td>0.977674</td>
</tr>
<tr>
<td>Wood (1996) Release #3</td>
<td>12</td>
<td>59.376054</td>
<td>0.971698</td>
</tr>
<tr>
<td>Wood (1996) Release #4</td>
<td>19</td>
<td>42.831021</td>
<td>0.977674</td>
</tr>
</tbody>
</table>

Table 4.5.2. The results on different datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Reliability (t_n+50)</th>
<th>SSE</th>
<th>R-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pham (2005) Phase 1 Data</td>
<td>0.999985708</td>
<td>2603.5148</td>
<td>1.2859</td>
</tr>
<tr>
<td>Pham (2005) Phase 2 Data</td>
<td>0.999983394</td>
<td>10015.7216</td>
<td>1.3703</td>
</tr>
<tr>
<td>Wood (1996) Release #1</td>
<td>0.999973211</td>
<td>20913.2148</td>
<td>0.3464</td>
</tr>
<tr>
<td>Wood (1996) Release #2</td>
<td>0.999967139</td>
<td>42882.6562</td>
<td>0.9822</td>
</tr>
<tr>
<td>Wood (1996) Release #3</td>
<td>0.999902327</td>
<td>8491.8095</td>
<td>0.8617</td>
</tr>
<tr>
<td>Wood (1996) Release #4</td>
<td>0.999989656</td>
<td>5918.2451</td>
<td>1.1753</td>
</tr>
</tbody>
</table>

From the Table 4.5.2 it can be seen that the value of SSE is smaller and the value of R-square is more close to 1. The results indicate that our NHPP Burr type XII model based on fault detection rate fits the data in the given datasets, best and predicts the number of residual faults in software most accurately.
4.6 Conclusion

Software reliability is an important quality measure that quantifies the operational profile of computer systems. This model is primarily useful in estimating and monitoring software reliability, viewed as a measure of software quality. In this thesis the fault detection rate is calculated with the number of faults remaining in the software. Considering the two factors jointly the fault detection rate is more realistic and accurate. we have discussed the performances of 6 datasets by using our new Burr type XII SRGM. The experiment result shows that the Phase 1 data set can provide a better goodness-of-fit compared with other datasets. The reliability of the model over Release #4 data is high among the data sets which were considered. This is a simple method for model validation and is very convenient for practitioners of software reliability.
*/
Program to find unknown parameters a, b and c of Burr Type XII using
Newton Raphson Method for Interval domain data
	*

#include<stdio.h>
#include<conio.h>
#include<math.h>
#define N 38
double g(double b,int s[],int n[],int sn);
double gdash(double b,int s[],int n[],int sn);
double gc(double c,int s[],int n[],int sn);
double gcDash(double c,int s[],int n[],int sn);
main()
{
int i,j,k,sk;
int n[N]={9,13,20,26,31,34,36,41,45,47,51,58,58,63,66,69,72,76,86,89,90,
int s[N]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38};
double savg,g1,g2,g3,g4,a;
double b[25],c[25];
double f1=0.0,f2,f3,z;
clrscr();
//sk=0;
printf("n********Newton Raphson Method********");
c[0]=b[0]=1.0;
i=-1;
do
{
//printf("B iteration");
i=i+1;
g1=g(b[i],s,n,s[N-1]);
g2=gdash(b[i],s,n,s[N-1]);
b[i+1]=b[i]-(g1/g2);
printf("\n\nb[%d]=%f b[%d]=%f",i,b[i],i+1,b[i+1]);

"}
printf("n
\n\n\n b[%d]-b[%d]=%f",i+1,i,fabs(b[i+1]-b[i]));
}
while(fabs(b[i+1]-b[i])>=0.1));
//printf("\n Final i value=%d",i);
j=-1;
do {
//printf("\n C Iteration");
j=j+1;
g3=gc(c[j],s,n,s[N-1]);
g4=gcdash(c[j],s,n,s[N-1]);
c[j+1]=c[j]-(g3/g4);
printf("n\n\n\n c[%d]=%f",j+1,c[j+1]);
printf("n\n\n\n c[%d]-c[%d]=%f",j+1,j,fabs(c[j+1]-c[j]));
}
while(fabs(c[j+1]-c[j])>=0.1);
for(k=1;k<N;k++) {
 f1=f1+(n[k]-n[k-1]);
}
z=(1+pow(s[N-1],c[j+1]));
f2=f1*pow(z,b[i+1]);
f3=pow(z,b[i+1])+1;
a=f2/f3;
printf("n\n\n\n b[%d]=%f is the MLE of b=%f",i+1,b[i+1],b[i+1]);
printf("n\n\n\n c[%d]=%f is the MLE of c=%f",j+1,c[j+1],c[j+1],a);
printf("n\n ********");
getch();
}

double g(double b,int s[N],int n[N],int sn)
{
 int i;
double d1,d2,e=0.0,gval,d;
double c1,c2,c3,c4,c5=0.0,c6,c7,e1,e2;
for(i=1;i<N;i++)
{
 e=e+(n[i]-n[i-1]);
}
for(i=1;i<N;i++)
{
 c1=(double)(s[i]+1);
 c2=(double)(s[i-1]+1);
 c3=pow(c1,b);
 c4=pow(c2,b);
 c5=c5+((-log(c2)-log(c1))+(((c3*log(c1))-(c4*log(c2)))/(c3-c4)));
}
d1=(double)sn+1;
d2=pow(d1,b);
c6=(log(1/d1)*(1/(d2-1)));
gval=(e*c5)+(e*c6);
printf("\ngval=%f",gval);
return gval;
}

double gdash(double b,int s[N],int n[N],int sn)
{
 int i;
 double gdval,c1,c2,c3,c4,c5=0.0;
 double d1,d2,d3,d4,e;
 for(i=1;i<N;i++)
 {
 e=e+(n[i]-n[i-1]);
 }
 for(i=1;i<N;i++)
 {
 c1=(double)(s[i]+1);
 c2=(double)(s[i-1]+1);

c3 = \text{pow}(c1, b);
c4 = \text{pow}(c2, b);
c5 = c5 + ((2^*((c4*c3*\log(c2/c1)*\log(c1)))/(\text{pow}(c3-c4, 2))));
}
d1 = \text{(double)}(sn+1);
d2 = \text{pow}(d1, b);
d3 = ((d2*\log(d1))/((\text{pow}(d2-1), 2)));
d4 = e*\log(d1)*d3;
gdval = (e*c5)+d4;
printf("\ngdval=%f",gdval);
return gdval;

double gc(double c,int s[N],int n[N],int sn)
{
int i;
double gcval,c1=0.0,c2,c3,c4,c5,c6=0.0,c7,p,q,r;
for(i=1;i<N;i++)
{
 c1 = c1 + (n[i]-n[i-1]);
}
for(i=1;i<N;i++)
{
 c2 = (double)\log(s[i-1]);
c3 = (double)\text{pow}(s[i], c);
c4 = (double)\text{pow}(s[i-1], c);
c5 = (double)\log(s[i]);
p = ((c3*c5)-(c4*c2))/(c3-c4));
q = ((c2*c4)/(1+c4));
r = ((c5*c3)/(1+c3));
c6 = c6 + ((p-q)-r);
}
c7 = \log(sn)/(1+\text{pow}(sn, c));
gcval = c1*(c6-c7);
double gcdash(double c, int s[N], int n[N], int sn)
{
 int i;
 double gcdval, c1=0.0, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, t=0.0, mk;
 for(i=1; i<N; i++)
 {
 c1 = c1 + (n[i] - n[i-1]);
 }
 for(i=1; i<N; i++)
 {
 c2 = log(s[i-1])/log(s[i]);
 c3 = pow(s[i], c);
 c4 = pow(s[i-1], c);
 c5 = (c3*c4)/((c3-c4)*(c3-c4));
 c6 = log(s[i]) - log(s[i-1]);
 c7 = log(s[i-1])*log(s[i-1]);
 c8 = c4/((1+c4)*(1+c4));
 c9 = log(s[i])*log(s[i]);
 c10 = c3/((1+c4)*(1+c4));
 t = t + (c2*c5*c6) - (c7*c8) - (c9*c10);
 }
 c11 = pow(log(sn), 2);
 mk = (1 + pow(sn, c)*(1 + pow(sn, c)));
 c12 = pow(sn, c)/mk;
 gcdval = (c1*t) + (c11*c12);
 printf("\ngc=%f", gcdval);
 return gcdval;
}