SYMBOLS

\(\lambda_{\text{max}} \) : Wavelength of maximum absorption
\(\varepsilon_{\text{max}} \) : Molar absorptivity
b : Slope
a : Intercept
S_b : Standard deviation on slope
S_a : Standard deviation on intercept
S_c : Standard error on estimation
r : correlation coefficient
\(^{0}\text{C} \) : Degree Centigrade
M : Molar
g : Gram
\(\mu \text{g} \) : microgram
ml : milliliter
mg : milligram
% : percentage
> : greater than
< : less than
min : minutes
hr : hours
temp : temperature
\%RSD : Percent Relative Standard Deviation
Fig : figure
Tab : Table
Cap : capsule
Inj : Injection
Syp : Syrup
Lab : Laboratory
Temp : Temperature
HPLC : High performance liquid chromatography
TLC : Thin layer chromatography
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared spectroscopy</td>
</tr>
<tr>
<td>VS</td>
<td>Visible spectroscopy</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High performance thin layer Chromatography</td>
</tr>
<tr>
<td>TLC / MS</td>
<td>Thin layer Chromatography / Mass spectroscopy</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>K</td>
<td>Sample retention factor</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER-I 1-63

1.1 **General Introduction** 1-2
 1.1a Visible Spectrophotometry 3-4
 1.1b Reactions proposed in the present investigation 5-6

1.2 **Objective of the present work** 7
 1.2a Oxidative coupling reactions (Methods M1, M2, M3, & M4) 7-11
 1.2b Redox reactions (Methods M5 & M6) 11-12
 1.2c Charge transfer reactions with quinines (Method – M7) 13-16

1.3 **General methodology for the development of new visiblespectrophotometric methods.** 16-24

1.4 **Introduction on Application of High Performance Liquid Chromatography for the Validation of Drugs** 25
 1.4a Instrumentation of HPLC 25-26
 1.4b Types of HPLC Techniques 26-30
 1.4c Components of HPLC 31-36
 1.4d Analytical method validation 37-53

References 54-63

CHAPTER-II 64-116

Development and Validation of Analytical procedure for the Estimation of NEVIRAPINE through HPLC Method in Pharmaceutical Formulation

2.1 **Drug profile** 64
2.2 **Literature Survey** 65-81
2.3 **Instruments and Materials** 81-82
2.4 **Method Development for Related Substances** 82-85
2.5 **Preparation of Solutions** 85-87
2.6 **Method Validation for Related Substances** 87
2.7 **Chromatographic Parameters** 88-89
2.8 **System Precision** 89
2.9 **Limit of Detection and Limit of Quantitation** 90-91
A. Visible-Spectrophotometric analysis of Cyproheptadine HCL in pure and pharmaceutical formulations

3.1 Drug profile
 3.1a Experimental
 3.1b Proposed procedures
 3.1c Results and Discussions
 3.1d Nature of color species
 3.1e Conclusions

B. RP-HPLC method for the estimation of Cyproheptadine HCL [CYP] in bulk drug and in tablet dosage forms

3.2 Analysis of Cyproheptadine HCL bulk drug and in tablet dosage forms
 3.2a Experimental
 3.2b Results and Discussion
 3.2c Conclusion
CHAPTER-IV

Analytical Method Validation for Assay By HPLC of Loperamide Hydrochloride in Bulk and Pharmaceutical Formulations

4.1 Drug profile 144-145
 4.1a Experimental 145-157
 4.1b Result & Conclusion 157-220

References 221

CHAPTER-V

5.1 Visible-Spectrophotometric Analysis of Loratadine in Pure and Pharmaceutical Formulations 222
 5.1a Drug profile 222
 5.1b Experimental 222
 5.1c Chemicals and reagents 223-224
 5.1d Proposed procedures 224-226
 5.1e Results and Discussions 226-240
 5.1f Chemistry of color species 241-244
 5.1g Conclusions 244

5.2 RP-HPLC Method for the estimation of Loradine [LRD] in bulk drug and in tablet dosage forms 245
 5.2a Experimental 245
 5.2b Instrumental description 245
 5.2c Chromatographic conditions 246-247
 5.2d Estimation of Loradine from commercial formulations by the proposed method 247-252
 5.2e Conclusion 252

References 253