CHAPTER-VI
SUMMARY OF FINDINGS, CONCLUSION AND SUGGESTION

The present study is accomplished by three stages. At the first stage, the rate of implementation of Knowledge Management (KM) was measured at the software companies. It is followed by the discussion on the issues motivators of the implementation of KM in software engineering at the second stage. At the final stage, the outcome of implementation of KM in software engineering were discussed along with the impact of implementation of KM on the enrichment of software engineering.

The confined objectives of the present are: (i) to exhibit the profile of the companies and respondents; (ii) to measure the rate of implementation of KM in software engineering at the companies; (iii) to examine the motivators and issues in the implementation of KM in software engineering at the companies; (iv) to analyse the various enrichment due the implementation of KM in software engineering; (v) to identify the important discriminate aspects of KM, its implementation, motivators, issues and outcomes among the lesser and higher experienced companies; and (6) to evaluate the impact of implementation of KM on the enrichment of software engineering, software system quality and software quality.

Since the present study is completely based on the primary data, a special care has been taken to frame the questionnaires. The questionnaire was divided into four important parts. The first part includes the profile of the software companies and respondents. The second part covers the rate of implementation of KM in software engineering at the companies whereas the third part focuses on the issues and motivators
to implement the KM in software engineering. The fourth part includes the various enrichment of software engineering due to the implementation of KM. The relevant variables are drawn from the review of previous studies and views of experts. A pilot study was conducted among 50 software engineers at various software companies in Chennai. Based on their advice, certain modification additions and simplifications were carried out in order to prepare the final draft of questionnaire.

The census study was applied to identify the sample of the study. All the registered software companies at Chennai were included for the present study. In total, there are 423 software companies which registered their namely in the Chamber of Software Companies (CSS) at Chennai. From each software company are representative was identified with the help of general manager of the company. The companies are classified into lesser and higher experienced companies. The companies with an experience of 10 or less than 10 years are treated as lesser experienced companies whereas the companies with are experience of more than 10 years of experience are treated as higher experienced companies. The collected data were processed with the help of appropriate statistical tools. The results were discussed in the previous chapters. In the chapter, the summary of findings, conclusion and suggestions are discussed.

SUMMARY OF FINDINGS

Majority of the companies have more than 10 years of experience in the field. These are treated as highly experienced. The companies with the experience of ten or less than 10 years are treated as lesser experienced. The dominant nature of ownership among
the companies is Private Limited Companies which is followed by Public Limited Companies.

The important nature of company is Indian company. The most important nature of company in lesser and higher experienced companies are Indian and Multi-National company respectively. The dominant number of employees in the companies is 61 to 90. The most important number of employees in the lesser and highly experienced companies is 61 to 90. The number of employees in highly experienced companies are higher than that in lesser experienced companies.

The dominant number of software engineers in the companies is above 40. The number software engineers in the higher experienced companies is higher than that in lesser experienced companies. The important number of departments in the company is more than 13 and 9 to 13. The most important number of departments in lesser and highly experienced companies is less than 4 and 9 to 13 respectively.

The important number of projects completed by the companies so far is 30 to 60 projects. The number of projects completed by the higher experienced companies is higher than that in lesser experienced companies. The important market coverage in the companies is at National and International level. The most important market coverage by the lesser and higher experienced companies are at national and international level respectively.

The important method of marketing among the companies is direct to customers. The most important method of marketing among the lesser and higher experienced
companies are job work and direction to customers respectively. The important annual turnover among the companies are Rs.101 to 150 lakhs. The level of annual turnover among higher experienced companies is higher than that in lesser experienced companies.

The important gender of the respondents (Software Engineers) in the present study is male whereas the important designation among them is project manager and junior engineer. The most important designation among the respondents in lesser and higher experienced companies are engineer and project manager respectively. The dominant years of experience among the respondents is higher at the higher experienced companies than that at lesser experienced companies.

The important number of companies worked so far among the respondents are less than 2 years and 2 to 4 years. The number of companies worked so far among the respondents in higher experienced companies is higher than that among the respondents in lesser experienced companies. The important number of projects worked so far among the respondents is 3 to 5 projects. The number of projects worked so far among the respondents in higher experienced companies are higher than that in lesser experienced companies. The most important place of work experience among the respondents in lesser and higher experienced companies is only India and both India and abroad respectively.

The rate of implementation of Knowledge Management (KM) in software companies have been measured by five dimensions namely KM process, KM activities, KM tools, KM initiatives and KM systems. The highly implemented variable in KM process at lesser and higher experienced companies is knowledge generation creation.
Regarding the implementation of variables in KM process, the significant difference among the lesser and higher experienced companies have been noticed in all twelve variables in KM process. The rate of implementation of KM process is higher at higher experienced companies than at lesser experienced companies.

The highly implemented variable in KM activities at lesser and higher experienced companies are knowledge identification and knowledge reuse respectively. Regarding the implementation of variables in KM activities, the significant difference among the lesser and higher experienced companies are noticed in the case of all nine variables in KM activities. The included nine variables in KM activities explain it to a reliable extent. The level of implementation of KM activities in higher experienced companies is higher than that in the lesser experienced companies.

The highly implemented KM tools in lesser and highly experienced companies are knowledge bases and learning and idea capture respectively. Regarding the implementation of KM tools, the significant difference among the lesser and higher experienced companies have been noticed in the case of all 20 variables in KM tools. The included 20 variables in KM tools explain it to a variable extent. The rate of implementation of KM tools in higher experienced companies is higher than that in lesser experienced companies.

The highly implemented variables in KM initiatives in lesser and higher experienced companies are work flow processes and top-down monitoring of knowledge related activities respectively. Regarding the implementation of KM initiatives, the significant difference among the lesser and higher experienced companies have been
noticed in the case of all six companies. The included six variables in KM initiatives explain it to reliable extent. The rate of implementation of KM initiatives is higher in higher experienced companies than that in lesser experienced companies.

The highly viewed enables of successful KM initiatives in software engineering at lesser and higher experienced companies are senior arrangement and social interaction respectively. Regarding the view on the enables of KM initiatives, the significant difference among the lesser and higher experienced companies have been noticed in the case of 17 out of 20 enables. The narrated important enables by the factor analysis are work culture, performance measurement, motivation, top management and organisation culture.

The included variables in each enables explain it to a reliable extent. The highly viewed enables in the lesser experienced companies are top management and motivation whereas in the higher experienced companies are organisation culture and work culture. Regarding the view on important enables, the significant difference among the lesser and higher experienced companies are noticed in work culture, performance measurement and motivation.

The significant influencing enables on the rate of implementation of KM initiatives in lesser experienced companies are work culture and motivation whereas in the higher experienced companies, these are work culture, top management and organisation culture. The rate of impact of important enables on the rate of implementation of KM initiatives are higher in higher experienced companies than in lesser experienced companies.
The barricading factors to implement KM initiatives in software engineering are examined with the help of four factors namely technology, culture, knowledge content and management of initiatives project. The highly viewed variable in technology at lesser and higher experienced companies are usability and over reliance respectively. In the case of culture, this is perceived in age. The significant difference among the two group of companies have been noticed in their view on all variables in technology and culture.

The highly viewed variable in knowledge content at lesser and higher experienced companies are coverage and structure respectively. Regarding the management of initiative project, their conflict management. The significant differences among the lesser and higher experienced companies have been noticed in the case of all variables in knowledge content and management of initiative project.

The highly viewed barricading factors to KM initiatives in lesser experienced companies are management of initiative project and culture. In the case of higher experienced companies, these are knowledge content and technology. Regarding the view on barricading factors, the significant difference among the two group of companies have been noticed in the case of all form barricading factors.

The significantly influencing barricading factors on the implementation of KM initiatives in lesser experienced companies are culture and knowledge content whereas in higher experienced companies, these are technology, culture and knowledge content. The rate of impact of barricading factors are higher in higher experienced companies than that in lesser experienced companies.
The highly implemented variable in KM system at lesser and higher experienced companies are informal networks and document management systems respectively. Regarding the implementation of variables in KM system, the significant difference among the lesser and higher experienced companies are noticed in the case of all 13 variables in KM systems. The narrated important KM system by the factor analysis are knowledge creation system, knowledge management system, knowledge transfer system, knowledge process system and knowledge adoption system.

The included variables in narrated five knowledge management system to a reliable extent. The highly implemented KM system in lesser and higher experienced companies are knowledge transfer system and knowledge management system respectively. Regarding the level of implementation of KM system, the significant difference among the two group of companies have been noticed in from out of 5 KM systems. The rate of implementation of KM system is higher in higher experienced companies than in lesser experienced companies. The important discriminate KM System among the lesser and higher experienced companies are KM activities and KM process which are higher at highly experienced companies that lesser experienced companies.

The highly viewed critical and successful factors in the lesser experienced companies are integrated technical infrastructure and; security and protection of knowledge. In the case of highly experienced companies, these are knowledge management strategy and organisational culture. Regarding the view on critical success factors, the significant difference among the two group of companies have been noticed in the case of all 10 variables in critical success factors.
The important critical success factors (CSF) narrated by the factors analysis are managerial and technical factor. The included variables in each factor explain it to a reliable extent. The highly viewed important CSF in lesser and higher experienced companies are technical and managerial factors respectively. Regarding the view on CSFs, the significant difference among the lesser and higher experienced companies have been noticed in all two CSFs. The significantly influencing CSFs on the implementation of KM in software engineering at lesser and higher experienced companies are technical and managerial factors respectively. The higher impact is noticed in the case of higher experienced companies than in the lesser experienced companies.

The highly viewed motivating factors to implement KM in software engineering at lesser and higher experienced companies are skill identification and accessing domain knowledge respectively. Regarding the view on motivating factors, the significant difference among the lesser and higher experienced companies have been noticed in the case of 8 out of 10 motivators. The narrated important motivating factors by the factor analysis are business needs and knowledge needs.

The variables in two important motivating factor explain it to a reliable extent. The highly viewed important motivating factor in lesser and higher experienced companies are business needs and knowledge needs respectively. Regarding the view on important motivating factors, the significant difference among the lesser and higher experienced companies have been noticed in the case of all two important motivating factors.
The significantly influencing motivating factors on the implementation of KM in software engineering at lesser experienced companies is business needs whereas at the higher experienced companies, these are business and knowledge needs. The rate of impact of motivating factors on the implementation of KM in software engineering is higher at highly experienced companies than at the lesser experienced companies.

The highly viewed issues in implementing KM in software engineering at lesser and higher experienced companies are selection of tools and ‘employees are not willing to reuse the other knowledge’s respectively. Regarding the view on issues in implementing KM in software engineering, the significant difference among the lesser and higher experienced companies have been noticed in the case of 13 out of 14 issues.

The important issues narrated by the factor analysis are technical, individual and organisational issues. The included issues in the important issues explain it to a reliable extent. The highly viewed important issues at lesser and higher experienced companies are technical and organisational issues respectively. Regarding the view on important issues, the significant difference among the lesser and higher experienced companies have been noticed in all three important issues.

The significantly affecting important issues on the rate of implementation of KM in software engineering at lesser experienced companies are technical and organisational issues whereas at the higher experienced companies, it is organisational issues. The degree of impact of important issues on the rate of implementation of KM in software engineering is higher at lesser experienced companies than at higher experienced companies.
The perspective on KM in software engineering at the software companies have been examined under ten dimensions namely management of intellectual resources, improving capabilities of employees, improving efficiency, management of knowledge assets, knowledge sharing culture, KM infrastructure, improvement in efficiency, cost reduction, quality improvement and socialisation.

The highly viewed variable in management of Intellectual resources at lesser and higher experienced companies are management of customers and competitors; and know what we know and don’t know respectively. Regarding the view variables in it, the significant difference among the lesser and higher experienced companies have been noticed in all four variables in it.

The highly viewed variable in improving capabilities of employees at lesser and highly experienced companies are expect articles for others to use and communities of practice respectively. The significant difference among the lesser and highly experienced companies have been noticed in all five variables in it. The highly viewed variable in improving efficiency at lesser and higher experienced companies is prevent repeating mistakes. Regarding the view on variables in improving efficiency, the significant difference among the lesser and higher experienced companies have been noticed in three out of four variables in it.

Regarding the management of knowledge assets, the highly viewed variable at lesser and highly experienced companies are focusing in selected areas and business; and responding and collecting knowledge documents respectively. The significant difference among the two group of companies have been noticed in two out of four variables in it.
The highly viewed variable in knowledge sharing culture in lesser and highly experienced companies are develop the sharing culture and continuous updation respectively. Regarding the view on variables in knowledge sharing culture, the significant difference among the lesser and highly experienced companies have been noticed in the case of all four variables in it.

Regarding the KM infrastructure, the significant difference among the lesser and highly experienced companies have been noticed in the case of all four variables in it. The highly viewed variable in it at lesser and higher experienced companies are best practices data base and organisation wide intranet respectively. In the case of improvement in efficiency, these variables are ‘respond the customer’s request at fast’ and ‘faster delivery and decision making’ respectively. The significant difference among the two group of companies have been noticed in the case of all three variables in it.

Regarding the cost reduction, the highly viewed variable in lesser and higher experienced companies are reuse and lesser cost by more efficiency respectively. Regarding the quality improvement, these variables are lesser mistakes and improvement of quality of solution respectively. The significant difference among the lesser and higher experienced companies have been noticed in the view on all variables in cost reduction and quality improvement.

The highly viewed variable in socialisation at the lesser and higher experienced companies is frequent social events. Regarding the view on variables in socialisation, the significant difference among the lesser and highly experienced companies have been noticed in the case of all three variables in it.
The included variables in each knowledge management perspective on software engineering (KMST) are explaining it to a reliable extent. The highly viewed KMSE in lesser experienced companies are improving capabilities of employees and cost reduction whereas in the case of highly experienced companies, these are improvement in efficiency and management of intellectual resources. Regarding the view on KMSE, the significant difference among the lesser and higher experienced companies have been noticed in the case of seven out of ten KMSEs.

The enrichment in software engineering due to the implementation knowledge management have been examined by the enrichment in software engineering, software system quality and software quality. The enrichment in software engineering is measured by the enrichment in software components, applications, models, metrics, design, development, testing and maintenance. The highly viewed variable in enrichment of software components in lesser and higher experienced companies is technology. The significant difference among the lesser and higher experienced companies have been noticed in the view on all five variables in software components.

The highly viewed variable in software applications in lesser and higher experienced companies are software myths and software process respectively. In the case of software models, these variables are delivery and maintenance; and integration and system testing respectively. Regarding the view on variables in software applications and models, the significant difference among the lesser and higher experienced companies have been noticed in all variables in it.
Regarding the software metrics, the highly viewed variable in lesser and higher experienced companies is metrics evaluation. The significant difference among the lesser and highly experienced companies have been noticed in the data collection whereas in the case of all four variables in software design, The significant difference among the lesser and higher experienced companies have been noticed in all variables in software development. The highly viewed variable in software development at lesser and higher experienced companies integration.

The highly viewed variable in software testing at lesser and higher experienced companies is structural testing. Regarding the view on variables in software testing, the significant difference among the lesser and higher experienced companies are noticed in the case of all eight variables in it whereas in the case of software maintenance, it is noticed in all three variables in it. The highly viewed variable in lesser and higher experienced companies are perfective maintenance and adaptive maintenance respectively. The included variables in each components of software engineering explain it to a reliable extent. The highly viewed and enriched components of software engineering due to the coverage of KM at lesser experienced companies is software models and software metrics whereas at the higher experienced companies, these are software metrics and software design. Regarding the view on enrichment of software engineering, the significant difference among the lesser and higher experienced companies have been noticed in all components of software engineering except software metrics.
The significantly associating important profile variables regarding the view on the enrichment of software engineering due to the coverage of KM are number of projects completed, number of employees in, annual turnover and nature of ownership. The important discriminate enriched components of software engineering among the lesser and higher experienced companies are software development among the lesser and higher experienced companies are software development and software design which are higher in highly experienced companies than in lesser experienced companies. In total, the level of enrichment of software engineering due to the usage of KM is higher at the higher experienced companies compared to lower experienced companies.

The significantly influencing components of KM on the enrichment of software engineering at the lesser experienced companies are KM process and KM tools whereas in the highly experienced companies, these are KM process, KM activities, KM tools and KM system. The rate of impact of components of KM on the enrichment of software engineering is higher at the highly experienced companies than at lesser experienced companies.

The highly viewed enrichment variables in software system quality due to the usage of KM at lesser experienced companies are integrity and portability whereas at the higher experienced companies, these are productivity and safety. The significant difference among the lesser and higher experienced companies have been observed in the enrichment of 24 out of 35 variables in software system quality.

The important Software System Quality (SSQ) factors narrated by the factor analysis are performance, software operation, functionality, satisfaction, flexibility,
dependability, software transition and software revision. The included variables in SSQ factors explain it to a reliable extent. The highly viewed SSQ factors at the lesser experienced companies are functionality and software transition whereas at the lesser experienced companies, these are dependability and satisfaction. Regarding the view on enriched SSQ factors due to the usage of KM, the significant difference among the lesser and higher experienced companies have been noticed in the case of six out of eight SSQFs.

The significantly associating important profile variables with the view on the SSQ factors are nature of ownership, number of employees in, number of software engineers in, the method of marketing and annual turnover. The important discriminate enriched SSQFs due to the usage of KM among the higher and lesser experienced companies are performance and software revision which are higher at highly experienced companies compared to lesser experienced companies. In total, the level of enrichment of SSQ is higher at the highly experienced companies than at the lesser experienced companies.

The significantly influencing components of KM on the enrichment of software system quality at lesser experienced companies are KM process and KM activities whereas at the higher experienced companies, these are KM process, KM activities and KM tools. The rate of impact of components of KM on the enrichment of software system quality is higher at the highly experienced companies than at the lesser experienced companies.

The enrichment of Software Quality (SQ) due to the usage of KM at the software companies have been measured with the help of 22 variables. The highly viewed variable
in SQ at the lesser experienced companies are installability and adaptability whereas at the higher experienced companies, these are attractiveness and operationability. Regarding the view on the variables in enrichment of software quality, the significant difference among the lesser and higher experienced companies have been noticed in the case of 19 out of 22 variables in it.

The important enriched Software Quality Factors (SQFs) narrated by the factor analysis are usability, portability, maintainability, functionality, reliability and efficiency. The included variables in the abovesaid SQFs explain it to a reliable extent. The highly viewed SQFs at the lesser experienced companies are portability and reliability whereas at the higher experienced companies, these are efficiency and usability. Regarding the view on the enrichment of SQFs, the significant difference among the lesser and higher experienced companies have been noticed in the case of usability, portability, functionality and efficiency.

The significantly associating important profile variables with the view on the enrichment of SQFs due to the usage of KM are number of employees in, number of projects completed method of marketing and annual turnover. The important discriminate enriched SQFs among the lesser and higher experienced companies are efficiency and usability which are higher at the highly experienced companies than at lesser experienced companies. In total, the level of enrichment in SQFs is higher at highly experienced companies than at the lesser experienced companies.

The significantly influencing components of KM on the enrichment of software quality in lesser experienced companies are KM process and KM activities whereas in the
higher experienced companies, these are KM process, KM activities, KM tools and KM initiatives. The rate of impact of components of KM on the enrichment of SQFs is higher at highly experienced companies that at lesser experienced companies.

CONCLUDING REMARKS

The study concluded that the rate of implementation of KM in software engineering at the higher experienced companies are higher than the rate of implementation of KM at lesser experienced companies. The profile of the companies especially its annual turnover is significantly associating with the rate of implementation of KM in software engineering. The implementation of KM in software engineering has been significant positive impact on the enrichment of software engineering, software system quality and software quality at the software companies. The important motivators of implementation of KM in software engineers are business and knowledge needs whereas the important issues in it are technical, individual and organisational issues. The technical and organisational issues have a significant impact on the implementation of KM in software engineering. The software companies are advised to understand the role of KM in their software engineering in order to develop and maintain the software as per the requirements of their customers. The customer’s expectation and needs are ever changing. Hence the software companies are advised to implement the KM in software engineering for their continuous enrichment in their field.
SUGGESTION

Based on the findings of the study, the following suggestions are drawn.

1. Systematic Approach

The usage of knowledge management in the development of software identifies the requirements of establishments of some system in order to reap more advantages from it. These are i) General background information system; ii) identification of knowledge areas system; iii) Roles and responsibilities system; iv) technological system; and v) implementation system. The establishment of the above-said KM systems in the software companies may produce better performance and productivity at their companies. For that they should follow the flow chart regarding the usage of KM in software engineering.
2. Implementation Approach

The implementation of KM in software engineering should be a smooth one and also it should be modified according to the requirements of the customer’s needs. Hence, the implementation approach should be a customer centric. The flow chart of customers centric approach is given below.
3. Requirements of Domain analysis for effective implementation of KM in Software Engineering

The domain analysis is the process of identifying, collecting, organizing and representing the relevant information is a domain based upon the study of existing systems and their development histories, knowledge captured from domain experts, underlying theory, and emerging technology within a domain (Kang and Cohen, 1990i). Treating K as a conceptual domain, the original model in domain analysis was developed by Prieto-Diaz, (1987ii). It is called as structured analysis and Design Technique (SADT). Later, it is modified by Nakamori, (2003iii). The latest model is given below.

![Diagram of Domain Analysis](image)

The phases in the domain analysis consists of six phases. These are (i) Selecting loading journals regarding KM; (ii) extracting keywards from publications in the loading journals; (iii) analysis extracted key words statistics and issualisation; iv) assigning key words so the categories regarding KM; v) considering the draw backs and fix them and; and vi) achieving the tax money to understanding KM. This is the advisable method for effective implementation of KM in software engineering.
4. Enhancement of Software Process Capability

Since the implementation of KM in the enrichment of software engineering, software system quality and software quality in the present study, it is advised to conduct the longitudinal studies. It could extend the simple structural models tested here to include feedback loops to capture the recursive relationships between process capability improvement, knowledge embedding, and knowledge creation. Such in depth studies can generate in rights about the intervention strategies for the implementation of KM practices that enhance process capabilities.

5. Need for fact-based learning and Processed Based Approaches

Initially, there is a higher need of fact-based learning for knowledge creation in any work setting. It consists of four interrelated mechanisms namely socialisation, externalisation, continuation and intervalisation. It is important for the senior managers to provide the night signals to the software development groups that improving the development process which is required for meeting specific project goals. It can be prided by the processed-based approach. It includes process knowledge, process capability matters, process routinization and co-opting development personnel.

6. KM Performance

The performance of the implementation of KM in software engineering in order to get the feedback on the implementation of KM in software engineering. Lee et al., (2005) proposed an Index called as Knowledge Management Performance Index (KMPI) for assessing KM performance. It is advisable to apply this index in order to evaluate the
performance of KM implementation in software engineering. The Knowledge Circulation Process (KCP) should be properly estimate to assess the KMPI. The KCP consists of five important components namely knowledge creation, knowledge accumulation, knowledge sharing, knowledge utilisation and knowledge internalisation.

7. Effective Implementation of KM System (KMS)

The implementation of the KMS in software engineering has its own significant influence on the quality of software engineering, it is essential to assess the critical factors of KMS before the implementation of KMS in software engineering. It is presented in figure.

![Diagram of KM Strategy and Implementation]

8. Remedies for Problems with Software Development

To end the problems in software development, the present identified the following remedies for application in software development. These are: i) structured techniques; ii) Fourth generation programming languages (4GC); iii) Computer Aided software engineering; iv) Formal methods; v) Clean room metrologies; vi) Process models; and vii) Object-oriented technology.
9. Life Cycle Analysis

The proper implementation and modification of KM in software engineering is possible when there is a continues updation and changes in their development and implementation process of software. The KM is highly useful regarding this aspect by its knowledge management life cycle. It consists of five phases namely infrastructure development, promotion of knowledge sharing, encouragement of reuse, currency of database and information overload. Any organisation should pass through five phases in their KMS development. Hence, they have to properly identify their problem at what phase/phases before identifying the solution for it.

10. Incentive Package

The management is advised to formulate an attractive incentive package for their project members to motivate them towards increased effort to suggest ideas for a new KM opportunities and launch a user friendly system before introducing KM initiatives. Explicitly, creating an project network characterised by managerial support with striking financial rewards, and visible healing system to handle knowledge, that stimulate to contribute in knowledge efforts, to respond swiftly to new needs of the project members consequently diving KM intentions.

11. Seminars and Workshops

The arrangement of seminars and workshops for the project members may be helpful to familiarize them with the basics of KM because without KM awareness employees can not contribute in it. Of course these seminars and workshops will not give
them the real knowledge that they are going to manage because that knowledge they already possess. The seminars and workshops will only expose them with the fact that they have such a precious object called knowledge that if the members manage in a sophisticated way, can help to them and also to the organisation.

12. Organisational Culture

The management of the companies should create a learning culture that should always encourage and help the project members to perform all the activities, which are compulsory for KM initiatives to be successful in the projects.

SCOPE FOR FUTURE RESEARCH

The present study will be a base for so many research works. The future scope of research on the field are summarised below. The study on impact of KM implementation on the software development, maintenance and enrichment may be separately discussed. The issues in the implementation of KM and it’s remedies may be focused in future research work. The scope of the study is confined to only software engineering, it may be extended in to many engineering fields. The role of knowledge management in the software engineering may be extended with the direct and indirect impact of KM on the software engineering. The managerial success factors for the implementation of KM in software engineering may be studies in near future and it may be correlated with the innovative performance of the company. There may a separate study on enables of KM process for software engineering in near future.
REFERENCES

