References

- Acheson, Ann, et al. "A BDNF autocrine loop in adult sensory neurons prevents cell
enzymes activity by protocatechuic acid in cadmium-induced neurotoxicity and
- Alesci, Salvatore, et al. "Major depression is associated with significant diurnal
elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of
physiological complexity in its secretion: clinical implications." The Journal of
Clinical Endocrinology & Metabolism 90.5 (2005): 2522-2530.
- Almeida, Rúbia, et al. "Evidence for the involvement of L-arginine-nitric oxide-cyclic
guanosine monophosphate pathway in the antidepressant-like effect of memantine
- Amaro, MariaInês, et al. "Anti-inflammatory activity of naringin and the
biosynthesized naringenin by naringinase immobilized in microstructured
materials in a model of DSS-induced colitis in mice." Food Research
International 42.8 (2009): 1010-1017.
- Anacker, Christoph, et al. "The glucocorticoid receptor: pivot of depression and of
regulatory mechanism to control cell death." Antioxidants & Redox Signaling 16.6
- Anisman, Hymie, and Zul, Merali. "Anhedonic and anxiogenic effects of cytokine
Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents


Invernizzi, Roberto, Stefano Belli, and Rosario, Samanin. "Citalopram's ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug's effect in the frontal cortex." *Brain research* 584.1 (1992): 322-324.


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents
References


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents
Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

References

- Ladea, Maria, and Mihai, Bran. "Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram." *Psychiatria Danubina* 25.2 (2013): 0-132.
References

References


- Maes, Michael, and Jean-Claude, Leunis. "Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better..."
References

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents.


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

References

- Raza, Syed Shadab, et al. "Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: a behavioral, biochemical and


- Sangeetha, Nagarajan, SelvarajAranganathan, and NamasivayamNalini. "Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1,
References


Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents
References

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents

References


- Wang, Quing-Song., et al. "Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression." Neuroscience 275 (2014): 365-373.

Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents
Pharmacological evaluation of PCA and Silymarin in experimentally induced depression in rodents


