List of Algorithms

Algorithm 3.1. **Reconfigure** the topology when node i is deleted from the Perturbed Torus derived from a base Torus structure with \(n \) rows and \(n \) columns. ..52

Algorithm 3.2. Reconfigure the topology when node i is added to the Perturbed Torus derived from a base Torus structure with \(n \) rows and \(n \) columns. ..54

Algorithm 3.3. Send a message from the current node C to the destination node D which is originated at source node S in the Perturbed Torus derived from a base Torus structure with \(n \) rows and \(n \) columns. ..55

Algorithm 3.4. Send a message from the current node C to the destination node D which is originated at source node S in a CG-I topology, \(C_p S \) with \(p=n^2-1 \) and connection set \(S = \{-n,-1,1,n\} \). 63

Algorithm 3.5. Finding a new neighbor node for node i in the direction of jump \(x \) S. \(p \) is the size of the base circulant graph, ..66

Algorithm 3.6. Send a message from the current node C to the destination node D which is originated at source node S in a RCG \(R_s \) with \(qsp=n^2-1 \) and \(S = \{-n,-1,1,n\} \) ..68

Algorithm 3.7. Send a message from the current node C to the destination node D which is originated at source node S in a Circulant Graph-II, \(C_p S \) with \(p=k^2-1 \) and connection set \(S = \{-k^{n-1}, k^{n-2}, \ldots, -1, 1, k^{n-2}, k^{n-1}\} \) ..72

Algorithm 3.8. Send a message from the current node C to the destination node D which is originated at source node S in a RCG-II, \(R_q S \) with \(qsp=k^2-1 \) and \(S = \{-k^{n-1}, k^{n-2}, \ldots, -1, 1, k^{n-2}, k^{n-1}\} \) ..76

Algorithm 3.9. Send a message from the current node C to the destination node D which is originated at source node S in a Circulant Graph-II, \(C_p S \) with \(p=2^{n-1} \) and connection set \(S = \{1,2,\ldots,2^{n-2},2^{n-1}\} \) ..81

Algorithm 3.10. Send a message from the current node C to the destination node D which is originated at source node S in a RCG-III, \(R_q S \) with \(qsp=2^2-1 \) and \(S = \{1,2,\ldots,2^{n-2},2^{n-1}\} \) ..84

Algorithm 4.1 Find place i for node m in the logical topology, given the traffic matrix T and distance matrix \(D \) for an N node network ..93

Algorithm 4.2 Find place i for node m in the logical topology, given the traffic matrix T and distance matrix \(D \) for an N node network ..94