CHAPTER -2
HOMOMORPHISMS ON SEMI GROUP OF ARITHMETIC FUNCTIONS ASSOCIATED WITH A GENERALIZED BASIC SEQUENCE

In this chapter, we introduce notions of a generalized basic sequence, generalized additive function and a generalized convolution associated with a generalized basic sequence and semi groups of arithmetic functions are shown to be homomorphic through a mapping induced by a particular generalized basic sequence and a generalized additive function.

The contents of the Chapter-II are essentially contained in SASTRY, SUKLA and PANDA [43]

§1. INTRODUCTION

2.1 As already stated in Chapter - 0, section §2, \((A_0, +)\) is an abelian group and \((A_1, \times)\) is a sub group of \((P, \times)\), \(\times\) being the unitary convolution. \((P, *)\) and \((M, \ast)\) are sub group of \((Q, \ast)\), \(\ast\) being Dirichlet convolution. We also recall (Chapter - 0) that \((A_0, +)\) is a sub group of \((A, +)\).

Throughout this Chapter - II unless otherwise specified \(\alpha\) stands for an additive function.

REARICK [37] has proved that the groups \((A, +), (P, \ast), (M, \ast)\), \((P, \times)\) and \((M, \times)\) are all isomorphic. Infact for each \(f \in P\) he has defined the function \(L_f \in A\) by

\[
(L_f)(1) = Log(1)
\]

\[
(L_f)(n) = \sum_{d \mid n} f(d) f^{-1}\left(\frac{n}{d}\right) \log d, \quad \text{if} \quad n > 1 \quad \text{and has shown that}
\]

\(L:(p, \ast) \rightarrow (A, +)\) is an isomorphism.

(33)
Later KRISHNA GANDHI [22] defined $L_a : (A_1, \ast) \to (A_0, +)$ as

$$\text{2.1.2} \quad (L_a f)(n) = \sum_{d \mid n} \alpha(d)f(d)f_0^{-1}\left(\frac{n}{d}\right)$$

corresponding to a completely additive function α, and claimed that L_a is an isomorphism onto.

P.L.V NAGESWARA RAO [32] found that while L_a is a homomorphism it need not always be an isomorphism and obtained conditions on α, under which L_a is an isomorphism.

GOLDSMITH [17,18] introduced the notion of a basic sequence as defined in (0.2.9). Associated with a basic sequence B GOLDSMITH [18] also introduced the notion of generalised convolution \circ_B as defined in (0.2.10). Further GOLDSMITH [18] has shown that (A_1, \circ_B) is an abelian group with δ (0.2.3) as the identity. The inverse of $f \in A_1$ with respect to \circ_B being denoted by f_B^{-1}.

Later RAJASEKHAR [34] introduced the notion of a B-additive function (0.2.11) with respect to a basic sequence B as defined in (0.2.9). Given a basic sequence B and a B-additive function α, RAJASEKHAR [34] defined the operator $L_{\beta a}$ as defined in (0.2.12) and has shown that $L_{\beta a}$ is always a homomorphism onto and investigated for condition on α under which $L_{\beta a}$ is an isomorphism.

Motivated by the work of GOLDSMITH [18], in the present Chapter-II of this dissertation, we introduce the notion of (2.2.1) generalized basic sequences, and (2.3.1) generalised additive functions associated with generalised basic sequence and (2.4.1) generalised convolutions associated with a generalised basic sequence, give an example of a generalised basic sequence F and show that (A_1, \circ_F) is a commutative semi group with
cancellation law, define $L_\alpha : (A, o_F) \to (A_0, +)$ suitably and show that L_α is a semi group homomorphism, where o_F is the generalized convolution associated with the generalized basic sequence F and α is a generalized additive function associated with generalized basic sequence F. Further we show that $L_\alpha : (A, o_F) \to (A_0, +)$ is never onto and never one-one (Examples (2.4.12) and (2.4.14)).

§2. GENERALIZED BASIC SEQUENCES

2.2 In this section, we define generalized basic sequences and give an example of a generalized basic sequence.

2.2.1 Let τ be a subset of $Z^+ \times Z^+$ (where Z^+ is the set of positive integers) satisfying

(2.2.1.1) $(a, b) \in \tau \Rightarrow (b, a) \in \tau$

(2.2.1.2) If $(b, c) = 1$, then $(a, bc) \in \tau \iff (a, b) \in \tau$ and $(a, c) \in \tau$

(2.2.1.3) $(1, k) \in \tau \forall k \in Z^+$

Then τ is called a generalised basic sequence.

We observe that every basic sequence is a generalised basic sequence.

We recall that (0.0.3), for any two positive integers a, b $(a, b)^*$ denotes the largest divisor of a which is a unitary divisor of b (COHEN [13]).

and $r \| a$ means (0.0.2) r is a unitary divisor of a.

We observe that, in general, $(a, b)^* \neq (b, a)^*$.

(35)
2.2.2 Example \(F = \left\{ (a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \mid (a,b)^* = (b,a)^* \right\} \)

Then \(F \) satisfies (2.2.1.1) and (2.2.1.3) and in theorem (2.2.7), we show that \(F \) also satisfies (2.2.1.2), hence is a generalized basic sequence. We observe that \(F \) does not satisfy (0.2.9.2) (Example 2.2.8) and hence is not a basic sequence.

In the following theorem we characterize the set \(F \).

2.2.3 Theorem: \((a,b) \in F \iff \exists r,s,t \in \mathbb{Z}^+ \exists a = rs, b = rt \)

and \((r,s) = (r,t) = (s,t) = 1\)

(This triad \((r,s,t)\) is uniquely determined by the pair \((a,b)\) since \((a,b) = r\).)

Proof: Suppose \((a,b)^* = (b,a)^* = r\) (say)

Then \(s,t \in \mathbb{Z}^+ \exists a = rs, b = rt, r \nmid a, r \nmid b \)

So that \((r,s) = 1 = (r,t)\)

Now \((s,t) = x \Rightarrow \text{either } \left(x, \frac{s}{x}\right) = 1 \text{ or } \left(x, \frac{t}{x}\right) = 1\).

Suppose, without loss of generality, that \(\left(x, \frac{s}{x}\right) = 1 \), then \(rx \nmid a \) and \(rx \nmid b \)

so that \(r = (b,a)^* \geq rx \Rightarrow x = 1 \). Thus \((s,t) = 1\).

Conversely, assume that \(a = rs, b = rt \) and \((r,s) = (r,t) = (s,t) = 1\).

Clearly \(r \mid a \) and \(r \mid b \)

Now suppose \(e \mid a \) and \(e \mid b \). Then \(e \mid rs \)

If \((e,s) > 1\), let \(p \) be a prime divisor of \((e,s)\) so that \((p,r) = 1\) and \(p \mid b \) and hence \(p \mid rt \). Consequently \(p \mid t \) which contradicts that \((s,t) = 1\). Hence \((e,s) = 1\) so that \(e \mid r \).

Thus \((a,b)^* = r\). By symmetry, follows that \((a,b)^* = r = (b,a)^*\).
The following example shows that \(a \cdot b = r^2 st, (r,s,t) = 1 \) need not imply that \((a,b) \in F\).

2.2.4 Example: Let \(ab = 2^4 \cdot 3 \cdot 5 \), \((2,3) = (2,5) = (3,5) = 1 \)

Let \(a = 2^3 \cdot 3 \) and \(b = 2 \cdot 5 \)
Then \((a,b)^* = 2 \neq 1 = (b,a)^* \)
Hence \((a,b) \notin F \).

2.2.5 Theorem: If \((a,b) \in F\) and \((a,c) \in F\) then \(((a,b)^*, (a,c)^*) \in F\)

Proof: Let \((a,b)^* = d, (a,c)^* = e\)

Suppose \((a,b) \in F\) and \((a,c) \in F\). Then, by Theorem 2.2.3, \(\exists d,f,g,e,l,m \in \mathbb{Z}^+ \)

\[a = df, b = dg \] and \((d,f) = (d,g) = (f,g) = 1 \) and

\[a = el, c = em \] and \((e,l) = (e,m) = (l,m) = 1 \)

Now, \(e \mid a \Rightarrow e \mid df \Rightarrow \exists d_i, f_i \) such that \(e = d_i f_i, d_i \mid d \) and \(f_i \mid f \)

\(d_i \mid a \Rightarrow d_i \mid el \Rightarrow \exists e_i, l_i \) such that \(d = e_i l_i, e_i \mid e \) and \(l_i \mid l \).

\[e_i \mid e \Rightarrow e_i \mid d_i l_i \Rightarrow e_i = x_i y_i \text{ where } x_i \mid d_i \text{ and } y_i \mid f_i \Rightarrow y_i \mid d_i y_i \mid f \text{ since } y_i \mid e_i \text{ and } e_i \mid d \text{ and } y_i \mid f_i \text{ and } f_i \mid f. \]

Thus \(y_i \mid d_i \) and \(y_i \mid f \Rightarrow y_i = 1 \) since \((d,f) = 1 \Rightarrow \)

Similarly \(d_i \mid e_i \) so that \(e_i = d_i \)

Clearly \((d_i, f_i) = 1 = (e_i, l_i) = (d_i, l_i) \)

Also \(l_i \mid d_i, f_i \mid f \) and \((d,f) = 1 \Rightarrow (l_i, f_i) = 1 \)

Thus \(d = d_i l_i, e = d_i f_i, (d_i, l_i) = 1 = (d_i, f_i) = (l_i, f_i) \)

Hence by theorem 2.2.3, \((d,e) \in F\)

(37)
Note: The converse of the above result is not true in view of the following example.

2.2.6 Example: \((2, 2^2)^* = 1, (2,1)^* = 1\) and \((1,1) \in F\) but \((2, 2^2) \notin F\) while \((2,1) \in F\).

The following theorem shows that \(F\) satisfies (2.2.1.2) and hence \(F\) is a generalized basic sequence.

2.2.7 Theorem: If \(a, b, c\) are positive integers such that \((b,c) = 1\) then \((a, bc) \in F\) if and only if \((a,b) \in F\) and \((a,c) \in F\)

Proof: Suppose \((a,b) \in F\) and \((a,c) \in F\) then by theorem 2.2.3,

\[(2.2.7.1) \exists \ d, f, g \ a = df, b = dg, (d,f) = (d,g) = (f,g) = 1\]

and

\[(2.2.7.2) \exists e, l, m \ a = el, c = em, (e,l) = (e,m) = (l,m) = 1\]

\[(2.2.7.3) (b,c) = 1 \Rightarrow (d,e) = (d,m) = (g,e) = (g,m) = 1\]

\[e | a \Rightarrow e | df \Rightarrow e | f \text{ (by (2.2.7.3))} \Rightarrow \exists f_1 \text{ such that } f = ef_1\]

\[d | a \Rightarrow d | el \Rightarrow d | l \text{ (by (2.2.7.3))} \Rightarrow \exists l_1 \text{ such that } l = dl_1\]

Hence

\[(2.2.7.4) \ de, f_1 = df = a = el = d, l_1 \Rightarrow f_1 = l_1\]

and \((d,f) = 1 \Rightarrow (df_1) = 1 \ (e,f_1) = (e,l_1) = 1\) since \((e,f) = 1\) and \(l_1 \parallel l\)

Thus

\[(2.2.7.5) (de, f_1) = 1\]

Similarly we can show, from (2.2.7.4), that

\[(38)\]
(2.2.7.6) \((gm, f_1) = 1 \)

(2.2.7.1), (2.2.7.2) and (2.2.7.3) imply that

(2.2.7.7) \((de, gm) = 1 \)

Since \(a = def_1 \) and \(bc = degm \), from theorem 2.2.3, using (2.2.7.5), (2.2.7.6) and (2.2.7.7) we concluded that \((a, bc) \in F \).

Conversely, assume that \((a, bc) \in F \). Then by theorem (2.2.3)

(2.2.7.8) \(\exists d, x, y \) such that \(a = dx \), \(bc = dy \) and \((d, x) = (d, y) = (x, y) = 1 \)

(2.2.7.9) \(b | dy \Rightarrow \exists d, y_1 \) such that \(b = d y_1 \) and \(d | d, y_1 | y \)

Let \(d_2 = \frac{d}{d_1} \) and \(y_2 = \frac{y}{y_1} \). Then

\(d_2, y_1 \ c = bc = dy = d_1 d_2 y_1, y_2 \) so that \(c = d_2 y_2 \)

This shows that

(2.2.7.10) \((d_1, d_2) = 1 = (y_1, y_2) \)

We have, from (2.2.7.8) and (2.2.7.9),

(2.2.7.11) \((d_1, d_2 x) = 1 \) and \((d_2 x, y_1) = 1 \) and \((d_1, y_1) = 1 \)

Since \(a = d_1 d_2 x \) and \(b = d_1 y_1 \) from theorem 2.2.3 and (2.2.7.10), follows that

\((a, b) \in F \). Similarly \((a, c) \in F \).

The following example shows that \(F \) does not satisfy (0.2.9.2) and hence \(F \) is not a basic sequence.

2.2.8 Example : Let \(a = 2.3, b = 3.5 \) and \(c = 3.5^2 \)

\((a, b)^* = 3 = (b, a)^* \) and \((a, c)^* = 3 = (c, a)^* \)

\((a, bc)^* = 1 \neq 3 = (bc, a)^* \)
§3. GENERALIZED ADDITIVE FUNCTIONS

In this section we define a generalized additive function, give some examples and characterize generalized additive function (Theorem 2.3.4).

2.3.1. Definition: Suppose \(\alpha \) is an arithmetical function satisfying

\[
\begin{align*}
(2.3.1.1) \quad \alpha(st) &= \alpha(s) + \alpha(t) \quad \text{if } (s,t) = 1 \\
(2.3.1.2) \quad \alpha(r^3 s) &= \alpha(s) \quad \text{if } (r,s) = 1
\end{align*}
\]

Then \(\alpha \) is called a generalized additive function associated with generalized basic sequence \(F \).

2.3.2 Observation: \(\alpha(1) = 0 \) if \(\alpha \) is a generalized additive function.

Infact \(\alpha(n^2) = 0 \) for \(n = 1, 2, 3, \ldots \).

2.3.3. Examples: We give below three examples of generalized additive functions associated with \(F \).

(2.3.3.1) Define \(\alpha(p^k) = \begin{cases} 1 & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases} \)

If \(n = \prod_{i=1}^{r} p_i^{k_i} \), define \(\alpha(n) = \sum_{i=1}^{r} \alpha(p_i^{k_i}) \)

(2.3.3.2) Define \(\alpha(p^k) = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases} \)

and \(\alpha(n) = \sum_{i=1}^{r} \alpha(p_i^{k_i}), \text{where} \quad n = \prod_{i=1}^{r} p_i^{k_i} \)

(2.3.3.3) Define \(\alpha(p^k) = \begin{cases} k & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases} \)

and \(\alpha(n) = \sum_{i=1}^{r} \alpha(p_i^{k_i}), \text{where} \quad n = \prod_{i=1}^{r} p_i^{k_i} \)

(40)
OBSERVATION: To define a generalized additive function, it is sufficient to define at prime powers. Further, from the definition follows that \(\alpha (p^{2^k}) = 0 \) for \(k = 0,1,2,... \).

2.3.4. Theorem: \(\alpha \) is a generalized additive function if and only if

- (2.3.1.1) \(\alpha (st) = \alpha (s) + \alpha (t) \) whenever \((s,t) = 1 \) and
- (2.3.4.1) \(\alpha (n) = 0 \) whenever \(n \) is a square.

Proof: Suppose \(\alpha \) is a generalized additive function. Then \(\alpha (1) = 0. \)

\[n = m^2 \Rightarrow \alpha (n) = \alpha (m^2) = \alpha (1) = 0 \text{ by (2.3.1.2). Thus (2.3.4.1) is satisfied.} \]

Conversely, assume that (2.3.1.1) and (2.3.4.1) hold.

Then \((r,s) = 1 \Rightarrow (r^2,s) = 1 \Rightarrow \alpha (r^2 s) = \alpha (r^2) + \alpha (s) \text{ (by (2.3.1.1))} \)

\[= \alpha (s) \text{ by (2.3.4.1)} \]

Thus (2.3.1.2) holds.

§4. GENERALIZED CONVOLUTIONS

2.4 In this section we define generalized convolution induced by the generalized basic sequence \(F \) of §2 and obtain some properties of this generalized convolution.

Throughout this section

\[F = \{ \ (a,b) \ | \ (a,b)^* = (b,a)^* \ \} \]
Notation: Suppose positive integers \(r_1, r_2, \ldots, r_k \) are pairwise coprime, then we write \((r_1, r_2, \ldots, r_k) = 1\).

2.4.1 Definition: For any two arithmetic functions \(f \) and \(g \) we define \(f \circ_F g \) as follows:

\[
(f \circ_F g)(n) = \sum_{\substack{d \mid n, e \mid n \\text{ and } (d, e) \in F}} f\left(\frac{d}{(d, e)}\right)g\left(\frac{e}{(d, e)}\right)
\]

we observe that (by theorem 2.2.3)

\[
(2.4.1.1) \quad (f \circ_F g)(n) = \sum_{n=rs, t \mid n, (r, t) = 1} f(s)g(t)
\]

(If we write \(d = rs \) and \(e = rt \), then \(n = de \) and \((d, e) \in F \))

2.4.2 Lemma: The convolution \(\circ_F \) is commutative and associative on the set \(A \) of arithmetic function.

Proof: Let \(f, g \in A \). Then, for \(n \geq 1 \),

\[
(f \circ_F g)(n) = \sum_{\substack{n=rs, t \mid n, (r, t) = 1}} f(s)g(t)
\]

\[= \sum_{\substack{n=rs, t \mid n, (r, t) = 1}} g(t)f(s) = (g \circ_F f)(n)\]

So that \(\circ_F \) is a commutative in \(A \).

Let \(f, g, h \in A \). Then, for \(n \geq 1 \)

\[
(2.4.2.1) \quad ((f \circ_F g) \circ_F h)(n) = \sum_{\substack{n=rs, t \mid n, (r, t) = 1}} (f \circ_F g)(s)h(t)
\]

(42)
\[
\sum_{n=r^*st} h(t)(f \circ r \circ g)(s)
\]
\[
= \sum_{n=r^*st} h(t) \sum_{n=r^*st} f(b)g(c)
\]
\[
= \sum_{n=r^*st} f(b)g(c)h(t)
\]

and

\[
(2.4.2.2) \quad (f \circ g \circ h)(n) = \sum_{n=r^*st} f(b)(g \circ h)(s)
\]
\[
= \sum_{n=r^*st} f(b) \sum_{n=r^*st} g(c)h(t)
\]
\[
= \sum_{n=r^*st} f(b)g(c)h(t)
\]

From (2.4.2.1) and (2.4.2.2) follows that \(f \circ g \circ h = (f \circ g) \circ h \)

So that \(\circ \) is associative on \(A \).

2.4.3 Corollary : \((A_1, \circ_F) \) is a commutative semi group .

Proof : This is a simple consequence of lemma 2.4.2

since \(f, g \in A_1 \Rightarrow f \circ_F g \in A_1 \).

2.4.4 Lemma : If \(f, g, h \in A \), then \((f + g) \circ_F h = (f \circ_F h) + (g \circ_F h) \)

Proof : \(((f + g) \circ_F h)(n) = \sum_{n=r^*st} (f + g)(s)h(t) \)
Hence lemma follows.

Now we show that cancellation law is valid in \((A, f, g)\).

2.4.5 Lemma: Suppose \(f \in A\) and \(g, h \in A\). Then \(f \circ h = f \circ g \Rightarrow g = h\)

Proof: Clearly \(g(1) = h(1)\) since \(f(1) = 1\).

Assume \(g(m) = h(m)\) for \(1 \leq m < n\). Then

\[
(f \circ h)(n) = \sum_{n=r2st \atop (r,s,t)=1} f(s)h(t) = f(1)g(n) + \sum_{n=r2st \atop (r,s,t)=1} f(s)g(t)
\]

\[
= f(1)g(n) + \sum_{n=r2st \atop (r,s,t)=1} f(s)h(t) \quad \text{(by induction hypothesis)}
\]

\[
= f(1)g(n) + (f \circ h)(n) - f(1)h(n)
\]

\[
\Rightarrow g(n) = h(n) \text{ since } f(1) = 1.
\]

Hence \((A, f, g)\) is a commutative semi group with cancellation law.

2.4.6 Theorem: Let \(\alpha\) be a generalized additive function. Then

\(f \in A \Rightarrow \exists\) unique \(g \in A\) such that \(g \circ f = \alpha f\)

Proof: We define \(g\) inductively.

Define \(g(1) = 0\) and assume that \(g\) is defined for \(s < n\).

Define \(g(n) = \alpha(n)f(n) - \sum_{n=r2st \atop scn,(r,s,t)=1} g(s)f(t)\)

(44)
Then,
\[\alpha(n)f(n) = g(n) + \sum_{\substack{(r, t) \\
(r, t) \in F}} g(s)f(t) \]
\[= \sum_{\substack{(r, t) \\
(r, t) \in F}} g(s)f(t) = (g \circ F)(n) \]

So that \((\alpha f)(n) = (g \circ F)(n)\)

Consequently \(g \circ F = \alpha f\)

Now we show that \(g\) is unique.

\(h \in A_0\) is such that \(h \circ F = \alpha f\)

Then, \(g \circ F = h \circ F\)

\[\Rightarrow g = h \quad (\text{by cancellation law 2.4.5}) \]

\[\Rightarrow g \text{ is unique.} \]

2.4.7 Definition: Suppose \(\alpha\) is a generalized additive function associated with generalized basic sequence \(F\). Define

(2.4.7.1) \(L_\alpha : (A_1, \circ_F) \to (A_0, +)\) by \(L_\alpha f = g\) where \(g \circ F = \alpha f\)

(which is determined uniquely in view of cancellation law)

and define \(\lambda_\alpha : A_1 \to A_0\) by

(2.4.7.2) \((\lambda_\alpha f)(n) = \alpha(n)f(n)\) for every positive integer \(n\).

2.4.8 Observation: We observe that \(L_\alpha f \circ F = \lambda_\alpha f\)

In the rest of the chapter \(\alpha\) stands for the generalized additive function associated with \(F\).

(45)
2.4.9 Theorem: For $f, g \in A_1$, we have
\[\lambda_\alpha (f \circ_F g) = \lambda_\alpha f \circ_F g + f \circ_F \lambda_\alpha g. \]

Proof: For any positive integer n, we have
\[(\lambda_\alpha (f \circ_F g))(n) = \alpha(n)(f \circ_F g)(n) \quad \text{(by 2.4.7.2)} \]
\[= \alpha(n) \sum_{\substack{r, s, t \in \mathbb{N}^3 \\ (r, s, t) = 1}} f(s)g(t) \]
\[= \sum_{\substack{r, s, t \in \mathbb{N}^3 \\ (r, s, t) = 1}} \alpha(r^2 s^2) \alpha(s^2 t^2) \alpha(t^2) \phi(r^2 s^2) \phi(s^2 t^2) \phi(t^2) \]
\[= \sum_{\substack{r, s, t \in \mathbb{N}^3 \\ (r, s, t) = 1}} \alpha(r^2 s^2) \phi(r^2 s^2) + \sum_{\substack{r, s, t \in \mathbb{N}^3 \\ (r, s, t) = 1}} \alpha(s^2 t^2) \phi(s^2 t^2) + \sum_{\substack{r, s, t \in \mathbb{N}^3 \\ (r, s, t) = 1}} \alpha(t^2) \phi(t^2) \]
\[= (\lambda_\alpha f \circ_F g)(n) + (f \circ_F \lambda_\alpha g)(n) \]

2.4.10 Theorem: For $f, g \in A_1$, we have
\[L_\alpha (f \circ_F g) = L_\alpha f + \lambda_\alpha g \]

Proof: $L_\alpha (f \circ_F g) \circ_F (f \circ_F g) = \lambda_\alpha (f \circ_F g) \quad \text{(by 2.4.8)}$
\[= \lambda_\alpha f \circ_F g + f \circ_F \lambda_\alpha g \quad \text{(by theorem 2.4.9)} \]
\[= (L_\alpha f \circ_F g) \circ_F (f \circ_F g) + f \circ_F (L_\alpha g \circ_F g) \quad \text{(by 2.4.8)} \]
\[= (L_\alpha f) \circ_F (f \circ_F g) + (L_\alpha g) \circ_F (f \circ_F g) \]
\[= (46) \]
2.4.11 Note: The above theorem shows that \(L_a : (A_1, \circ_F) \rightarrow (A_0, +) \) is always a semi group homomorphism.

In the following example we show that \(L_a \) is never on-to.

2.4.12 Example: Define \(g(n) = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{otherwise} \end{cases} \)

Suppose \(L_a \) is onto. Then \(\exists f \in A_1 \) such that \(L_a f = g \)

\[\Rightarrow g \circ_F f = L_a f \circ_F f = \alpha f \]

(2.4.12.1) \[(\alpha f)(4) = \alpha(4)f(4) = 0 \quad (\text{since } \alpha(4) = 0) \]

(2.4.12.2) \[(g \circ_F f)(4) = \sum_{(r,t) = 1} g(s)f(i) \]

\[= g(1)f(1) + g(4)f(1) + g(1)f(4) \]

\[= g(4) \quad (\text{since } g(1) = 0 \text{ and } f(1) = 1) \]

From (2.4.12.1) and (2.4.12.2) we get \(g(4) = 0 \) a contradiction.

The following theorem characterizes the set of all \(f \in A_1 \) which are mapped into the zero element of \(A_0 \) under \(L_a \).
2.4.13 Theorem: Suppose \(f \in A_1 \). Then \(L_\alpha f = 0 \) if and only if \(\alpha f = 0 \)

Proof: \(L_\alpha f = 0 \Rightarrow 0 = L_\alpha f \circ f = \alpha f \Rightarrow \alpha f = 0 \)

Conversely, suppose \(\alpha f = 0 \). Clearly \((L_\alpha f)(1) = 0 \)

Suppose \((L_\alpha f)(m) = 0 \) for all \(m < n \). Then

\[
0 = (\alpha f)(n) = (L_\alpha f \circ f)(n) = \sum_{(r,s,t)=1}^{n \in \mathbb{N}} (L_\alpha f)(s)f(t)
\]

\[
= (L_\alpha f)(n)f(1) + \sum_{(r,s,t)=1}^{n \in \mathbb{N}} (L_\alpha f)(s)f(t) = (L_\alpha f)(n)
\]

(by induction hypothesis and since \(f(1) = 1 \))

Thus \(L_\alpha f = 0 \)

The following example shows that \(L_\alpha \) is never one-one.

2.4.14 Example: Let \(f(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases} \)

and \(g(n) = \begin{cases} 1 & \text{if } n \text{ is a square} \\ 0 & \text{otherwise} \end{cases} \)

Then, for any generalized additive function \(\alpha \), by theorem 2.4.13,

\((L_\alpha f)(n) = 0 \) since \((\alpha f)(n) = 0 \) for all \(n \geq 1 \)

and \((L_\alpha g)(n) = 0 \).

Since \((\alpha g)(n) = \alpha(n)g(n) = \begin{cases} 0 & \text{if } n \text{ is a square} \text{ by } 232 \\ 0 & \text{if } n \text{ is not a square} \text{ by definition of } g \end{cases} \)

= 0 always

Thus \(L_\alpha f = L_\alpha g \) but \(f \neq g \)

(48)
In view of examples 2.4.12 and 2.4.14, L_a is never onto and never one-one. Hence it is natural to investigate for the range of L_a, for a given generalized additive function α. This is carried in chapter - III.