Appendix - IV

Papers presented at conferences:

5. Progress report presented at the 3rd Indo-US Progress meeting held at New Delhi, India, April 1999.

Papers published / sent for publication:

2. Thermomechanical Processing of Cu-Bearing HSLA-100 Steel, sent to Trans-Tech Publications, USA.
List of Figures

Chapter II

2.1 - Chemical compositions, carbon equivalents and weldability diagram for high-strength naval steels
2.2 - History of the application of MAE
2.3 - Solubility Products of Nb, Ti, V, Al carbides and nitrides
2.4 - Austenite grain-growth characteristics in steels containing various microalloy additions
2.5 - Three stages of controlled rolling process and the changes in microstructure accompanying deformation
2.6 - Schematic illustration of two types of true-stress true-strain accompanying the steady-state deformation at elevated temperatures
2.7 - Equivalent stress-equivalent strain curves of low-alloy steel
2.8 - Dependence of time for 50% recrystallization or restoration on strain for C-Mn and low-alloy steel
2.9 - Dependence of statically recrystallized grain size on strain
2.10 - Temperature dependence of grain growth for C-Mn and niobium-treated steels
2.11 - Dependence of mean flow stress on the inverse of absolute temperature (T) for a Nb microalloyed steel
2.12 - Migaud’s data replotted
2.13 - Effect of precipitate size on the increase in yield strength
2.14 - The effects of variation in grain size on the impact-transition temperature of controlled rolled low-carbon 0.80% Mn steel
2.15 - Relation between required characteristic, metallurgical factor and manufacturing method in high-strength steel
Chapter III
3.1 - Different behavior of response \(y \) as a function of the factors \((x_1 \text{ and } x_2) \):

 (a) no effect of \(x_1 \) and \(x_2 \) on \(y \), (b) main effect of \(x_1 \) on \(y \), but no effect of \(x_2 \) on \(y \),
 (c) effect of \(x_1 \) and \(x_2 \) on \(y \), but no \(x_1 - x_2 \) interaction, (d) main effects of \(x_1 \) and \(x_2 \), and also \(x_1 - x_2 \) interaction.

3.2 - \(2^3 \) Factorial Design explained in three dimensions

3.3(a) - Maxima of \(f(x) \) and minima \(-f(x)\) occur at the same value of \(x \)
3.3(b) - Minima of \(f(x) \) and maxima \(-f(x)\) occur at the same value of \(x \)

3.4(a) - Univariate search procedure
3.4(b) - Failure of univariate method on a steep valley

3.5 - Steepest Ascent directions

Chapter IV
4.1 - Copy of typical TMA run
4.2 - Dimensions of two different types of tensile specimens used in the present investigation
4.3 - Dimensions of three types of Charpy specimens used in the present investigation
4.4 - Schematic representation of Rolling (schedules 1 and 2)
4.5 - Schematic diagram of controlled rolling with controlled cooling
4.6 - Schematic illustrations of two types of true-stress true-strain curves accompanying the steady-state deformation at elevated temperatures
4.7 - Lower critical reduction and upper critical reduction temperature to refine \(\gamma \)-grains by recrystallization
4.8(a) - Schematic diagram of TMT Route 1
4.8(b) - Schematic diagram of TMT Route 2
Chapter V
5.1 - SEM of GPP steel (as-received condition)
5.2 - SEM of GPT steel (as-received condition)
5.3 - Fractograph of GPP (as-received) tensile specimen
5.4 - Fractograph of GPT (as-received) tensile specimen
5.5 - Fractograph of Charpy specimen -- GPP as-received steel (test temperature = -50 °C)
5.6 - Fractograph of Charpy specimen -- GPT as-received steel (test temperature = -50 °C)

Chapter VI
6.1 - Tempering temperature vs. hardness curves (GPP steel)
6.2 - Tempering temperature vs. hardness curves (GPT steel)
6.3 - SEM of GPP steel (WQ condition)
6.4 - SEM of GPT steel (WQ condition)
6.5 - SEM of GPP steel (AC condition)
6.6 - SEM of GPP steel (AC condition)
6.7(a) - TEM of WQ sample showing lath structure
6.7(b) - TEM of WQ steel showing precipitates within the lath.
6.8(a) - TEM of steel tempered at 450 °C (1 hr) showing persistence of lath structure
6.8(b) - TEM of steel tempered at 450 °C (1 hr). The blurred regions indicate coherency strains due to Cu precipitates during early stage of tempering.
6.9(a) - TEM of steel tempered at 600 °C (1 hr) showing persistence of lath structure.
6.9(b) - TEM of steel tempered at 600 °C (1 hr) showing occurrence of recovery in the lath structure with distinct precipitates in the matrix.
6.10(a) - TEM of steel tempered at 700 °C showing spherical/rod shaped copper precipitates.
6.10(b) – TEM of steel tempered at 700 °C showing transformation of austenite to lath martensite with precipitates in the matrix.

6.11(a) – SEM fractograph of Charpy specimen (GPP steel tempered at 450 °C – 1 hr.) shows quasi-cleavage fracture (test temperature -50 °C).

6.11(b) – SEM fractograph of Charpy specimen (GPP steel tempered at 700 °C – 1 hr.) shows dimples on fracture surface (test temperature -50 °C).

6.12(a) – SEM fractograph of Charpy specimen (GPT steel tempered at 450 °C – 1 hr.) shows quasi-cleavage fracture (test temperature -50 °C).

6.12(b) – SEM fractograph of Charpy specimen (GPT steel tempered at 700 °C – 1 hr.) shows dimples on fracture surface (test temperature -50 °C).

6.13(a) – Typical stress-strain diagram of GPP steel tempered at 600°C and 700°C.

6.13(b) – Typical stress-strain diagram of GPT steel tempered at 600°C and 700°C.

6.14 – Variation of YS/TS (Yield Ratio) with time.

6.16 – Plot of tensile stress vs. Holloman-Jaffe parameter (GPP steel).

6.18 – Plot of tensile stress vs. Holloman-Jaffe parameter (GPT steel).

6.19 – Variation of yield stress with tempering time (0.33-80 hrs.) and tempering temperature(GPP steel).

6.20 – Variation of yield stress with tempering time (0.33-80 hrs.) and tempering temperature(GPP steel).

6.21 – Variation of yield stress with tempering time (0.33-12 hrs.) and tempering temperature(GPP steel).

6.22 – Variation of yield stress with tempering time (0.33-12 hrs.) and tempering temperature(GPT steel).

6.23 – Variation of Charpy strength (at -50°C) with tempering time (0.33-12 hrs.) and tempering temperature(GPP steel).

6.24 – Variation of Charpy strength (at -50°C) with tempering time (0.33-12 hrs.) and tempering temperature(GPT steel).
6.26 – Yield stress response surface superimposed on Charpy response surface (GPT steel).
6.27 – Superimposed contour plot of yield stress and −50 °C Charpy V-notch value (GPP steel).
6.28 – Superimposed contour plot of yield stress and −50 °C Charpy V-notch value (GPT steel).
6.29 – Yield strength response surface (GPP steel).
6.30 – Yield strength response surface (GPT steel).
6.31 – Charpy response surface (GPP steel).
6.32 – Charpy response surface (GPT steel).
6.33 – Superimposed contour plot of yield stress and −50 °C Charpy V-notch value (GPP steel).
6.34 – Superimposed contour plot of yield stress and −50 °C Charpy V-notch value (GPT steel).

Chapter VII

7.1 – Solubility Limits of Nb based on the relationship of Irvine et. al.
7.2 – TEM showing lath martensite in steel heated at 1100 °C for 1 hour.
7.3 – Optical microphotograph of steel reheated to 1200 °C.
7.4 – Optical microphotograph of steel reheated to 1100 °C.
7.5 – Typical diagram showing roll forces plotted against time for Passes 1,2 & 3.
7.6 – Typical diagram showing roll forces plotted against time for Passes 4,5 & 6.
7.7 – True strain vs. strain rate for 3 passes (sample 10, Table 7.3).
7.8 – Log-log plot of Zener-Holloman parameter vs. flow stress.
7.9 – TEM showing fine precipitates in the recrystallization zone.
7.10 – 1/d vs. log(Z) plot showing fitting of data in recrystallization zone.
7.11 – Comparison of calculated grain size and measured grain size.
7.12 – Contour lines of grain size and UTS.
7.13(a) – SEM fractograph of TMCP sample 12 (FRT 850 °C – DQ).
7.13(b) – SEM fractograph of TMCP sample 16 (FRT 850°C-CC to 600°C-WQ).
7.14 – TEM of TMCP sample 12 (FRT 850 °C – DQ) shows lath martensite.
7.15 – TEM of TMCP sample 16 (FRT 850°C-CC to 600°C-WQ) shows the presence of ferrite in a few areas in addition to predominantly lath martensite structure.
7.16 – 3-D microphotographs after controlled rolling.
7.17 – TEM of DQ steel showing laths of martensite occurring in packets within large area of prior austenite.
7.18 – TEM of TMCP-Q steel showing larger packet size compared to DQ steel.
7.19 – TEM of TMCP-Q sample showing cellular structure.
7.20 – TEM of DQ samples showing dislocations.
7.21(a) – TEM of 20% deformed steel (FRT=1035 °C). Average lath size ~0.38 μm
7.21(b) – TEM of 85% deformed steel (FRT=752 °C). Average lath size ~0.15 μm
7.22 – Tempering temperature vs. Hardness curve.
7.23 – Tempering temperature vs. Yield Strength curve.
7.24 – TEM of GPP steel (950 °C-WQ-tempered to 450 °C, 1 hr.-WQ) showing precipitates, dislocations and laths.
7.25 – TEM of TMCP steel tempered at 450 °C, 1 hr. showing dislocations, substructures and sub-grains within laths.
7.26 – TEM of (GPP) steel (950 °C-WQ-tempered to 600 °C, 1 hr.-WQ) shows recovered microstructure with precipitates.
7.27 – TEM of TMCP steel tempered at 600 °C, 1 hr. shows less recovered structure with more precipitates.
7.28 – TEM of (GPP) steel (950 °C-WQ-tempered to 700 °C, 1 hr.-WQ) shows new generation austenite at the lath boundaries.
7.29 – TEM of TMCP steel tempered at 700 °C, 1 hr. shows finer laths with recovered ferrite grains.
7.30 - Effect of controlled rolling and grain size on Yield Strength.

7.31 - Contribution of grain size to Yield Strength.

Chapter VIII

8.1 - Optical micrographs of steel after given treatment
 (a) - intercritically annealed at 780 °C followed by quenching
 (b) - intercritically annealed at 780 °C, rolled 30%, followed by quenching
 (TMT Route 1)

8.2 - Optical micrographs of steel after given treatment
 (a) - intercritically annealed at 840 °C followed by quenching
 (b) - intercritically annealed at 840 °C, rolled 30%, followed by quenching
 (TMT Route 1)

8.3 - Transmission electron micrograph of steel after given treatment
 (a) - intercritically annealed at 780 °C followed by quenching
 (b) - intercritically annealed at 780 °C, rolled 30%, followed by quenching
 (TMT Route 1)

8.4 - Transmission electron micrograph of steel after given treatment
 (a) - intercritically annealed at 840 °C followed by quenching
 (b) - intercritically annealed at 840 °C, rolled 30%, followed by quenching
 (TMT Route 1)

8.5(a) - Isoproperty lines for yield stress - TMT Route 1
8.5(b) - Isoproperty lines for tensile strength - TMT Route 1
8.5(c) - Isoproperty lines for percent elongation - TMT Route 1
8.5(d) - Isoproperty lines for percent ferrite - TMT Route 1

8.6 - Optical micrographs of steel after given treatment
 (a) - intercritically annealed at 780 °C followed by quenching
 (b) - intercritically annealed at 780 °C, rolled 30%, followed by quenching
 (TMT Route 2)

8.7 - Optical micrographs of steel after given treatment
 (a) - intercritically annealed at 840 °C followed by quenching
(b) – intercritically annealed at 840 °C, rolled 30%, followed by quenching (TMT Route 2)

8.8 – Transmission electron micrographs of steel intercritically annealed at 780 °C followed by quenching (TMT Route 2)

8.9 – Transmission electron micrographs of steel intercritically annealed at 780 °C, rolled 30%, followed by quenching (TMT Route 2)

8.10 – Transmission electron micrographs of steel intercritically annealed at 840 °C followed by quenching (TMT Route 2)

8.11 – Transmission electron micrographs of steel intercritically annealed at 840 °C, rolled 30%, followed by quenching (TMT Route 2)

8.12(a) – Isoproperty lines for yield stress – TMT Route 2

8.12(b) – Isoproperty lines for tensile strength – TMT Route 2

8.12(c) – Isoproperty lines for percent elongation – TMT Route 2

8.12(d) – Isoproperty lines for percent martensite – TMT Route 2

List of Tables

Chapter II
2.1 – Typical chemical compositions and mechanical properties of HY-80, HSLA-80, HY-100 and HSLA-100 steels
2.2 – Effects of micro-alloying elements
2.3 – Empirical equations for contributions to yield strength by solid solution strengthening

Chapter III
3.1 - Three factor 2^3 Factorial Design
3.2 - Three factor 2^3 Factorial Design (with interactions)
3.3 - Broad classification of Optimization Techniques
Chapter IV
4.1 - Rolling Schedule 1
4.2 - Rolling Schedule 2
4.3 - Rolling Schedule 3

Chapter V
5.1 – Chemical compositions of the two steels (GPP and GPT)
5.2(a) – Calculated A_c_1 and A_c_3 values
5.2(b) – Experimentally determined A_c_1 and A_c_3 values
5.3(a) - Mechanical properties of the as-received materials
5.3(b) - Mechanical properties as supplied for as-received materials

Chapter VI
6.1(a) – 2^2 design matrix along with response
6.1(b) - 2^2 design matrix along with response
6.1(c) – 2^2 design matrix along with response
6.2(a) – Table for computation of A_{bij} values
6.2(b) – Table for computation of ‘F’ values
6.3(a) – Table for computation of A_{bij} values
6.3(b) – Table for computation of ‘F’ values
6.4(a) – Table for computation of A_{bij} values
6.4(b) – Table for computation of ‘F’ values
6.5 – Comparison of calculated and experimental hardness values
6.6 – Charpy impact values at $-52\,^\circ C$
6.7 – Tensile properties of GPP and GPT steels after tempering at different time and temperature combinations
6.8 - $-50\,^\circ C$ CVN energy values of two steels at different tempering temperature and time.
6.9 - 2^2 Design matrix showing operating variables and responses
(Region 600 °C-700 °C and 0.33-2 hrs) – GPP steel

6.10 - 2^2 Design matrix showing operating variables and responses
(Region 600 °C-700 °C and 0.33-2 hrs) – GPT steel

6.11 – Iterative process of Steepest Ascent

6.12 – Computer output of Grid Search technique (GPP steel)

6.13 - Computer output of Grid Search technique (GPT steel)

Chapter VII

7.1 - Comparison of T_R temperatures

7.2 - Rolling schedule 1

7.3 - Rolling schedule 2

7.4 - Rolling schedule 3

7.5 - Comparison calculated and experimental values of flow stresses

7.6 - Grain sizes at different values of Zenner-Holloman parameters

7.7 - Grain sizes and mechanical properties of samples subjected to different
TMCP conditions

7.8 - Tensile properties of TMCP steel

7.9 - Empirical equations for contribution to yield strength by
solid solution strengthening

7.10 - Percentage contribution of various factors to yield strength

7.11 - Composition of steel used by Fuyu et. al.

Chapter VIII

8.1 - Variation of different factors, base levels and codes used in the
TMT experiments

8.2 - Matrix of design showing different treatment combinations and the
mechanical properties and percentage ferrite (TMT Route 1)

8.3 - Matrix of design showing different treatment combinations and the
mechanical properties and percentage martensite (TMT Route 2)