List of Figures

Fig.1.1 The Process of Mathematical Modelling
Fig.1.2 Graphical Representation of Fuzzy Number \(\tilde{A} \)
Fig.1.3 Addition Operation by Using Function Principle and Extension Principle
Fig.1.4 Comparison of Fuzzy Multiplication Operation by Function Principle and Extension Principle
Fig.1.5 The case of \(b<M \)
Fig.1.6 The case of \(M<b \)
Fig.1.7 The Graded Mean \(h \)-level of Generalized Fuzzy Number \(\tilde{A} = (c, a, b, d, W_A)_{LR} \)
Fig.1.8 Comparison of Two Triangular Fuzzy Numbers
Fig.1.9 Pictorial Representation of \(\prod_{i}^{(\hat{b})} \)
Fig.1.10 Pictorial representation of \(N_{i}(\hat{b}) \)
Fig.1.11 Three Phases of Learning Curve
Fig.3.1 Representation of Inventory System with Partial Backlogging
Fig.3.2 Graphical Representation of Effect of Learning on Profit
Fig.3.3 Graphical Representation of Learning Effect vs Profit
Fig.3.4 Graphical Representation Learning Effect vs Order quantity per shipment
Fig.3.5 Graphical Representation of Effect of Advertisement on Profit
Fig.3.6 Graphical Representation of Effect of Learning on Percentage of Defective Items
Fig.5.1 Demand Pattern with Respect to Different Value of ‘r’
Fig.5.2 Demand Pattern for Different Value of ‘b’
Fig.5.3 Demand Pattern for Different Value of ‘\(\bar{c} \)’
Fig.5.4 Concavity of Profit for Given Value of Q (\(\bar{c}=0.6 \))
Fig.5.5 Change in Profit w.r.t to Change in ‘\(\bar{c} \)’
Fig.5.6 Change in Initial Inventory Level or Demand Rate w.r.t to Change in ‘\(\bar{c} \)’
Fig.6.1 Inventory level of Production Model
Fig.6.2 Convexity of Total Cost Function with Respect to Production Rate
Fig.6.3 Unit Production Cost with Respect to Production Quantity
Fig. 6.4 Effect of Change in Demand on Production Rate
Fig. 6.5 Effect of Holding Cost, Opportunity cost and Setup Cost on Production Rate
Fig. 6.6 Effect of Different Components of Production Cost on Production Rate
Fig. 8.1 Producer’s Inventory Model
Fig. 8.2 Distributor’s Inventory level
Fig. 8.3 Retailer’s Inventory level
Fig. 8.4 Convexity of Total Cost
Fig. 8.5 Comparison of Total Cost for the Different Perspective
Fig. 8.6 Effect of Deterioration Rate on Inventory Cost of Player
Fig. 8.7 Effect of Imperfect Production Rate on Inventory Cost of Player
Fig. 8.8 Effect of Producer Setup Cost on Inventory Cost of Player
Fig. 8.9 Effect of Distributor Ordering Cost on Inventory Cost of Player
Fig. 8.10 Effect of Retailer Ordering Cost on Inventory Cost of Different Player
Fig. 8.11 Effect of Producer Holding Cost on Inventory Cost of Different Player
Fig. 8.12 Effect of Distributor Holding Cost on Inventory Cost of Player
Fig. 8.13 Effect of Retailer Carrying Cost on Inventory Cost of Player
Fig. 8.14 Effect of Producer Shortage Cost on Inventory Cost of Player
Fig. 8.15 Effect of Distributor Shortage Cost on Inventory Cost of Player
Fig. 8.16 Effect of Retailer Shortage Cost on Inventory Cost of Player
List of Tables

Table-3.1: Effects of Learning Rate on Optimal Order Quantity and Profit
Table-3.2: Effects of Learning on Holding Cost, Ordering Cost and Percentage of Defective Items on Order Quantity and Profit
Table-3.3: Variation in Profit and Order Quantity with Respect to % Change in Demand
Table-3.4: Effect of Frequency of Advertisement on Profit
Table-3.5: Effect of Backlogging Rate of Optimal Solution
Table-3.6: Effect of Learning and Impreciseness in Demand on Optimal Solution
Table-3.7: Change in Optimal Solution with Respect to Change in ‘b’ and ‘n’
Table-3.8: Sensitive Analysis with Respect to Backordering Cost and Lost Sale
Table-4.1: Major Characteristics of Inventory Models by Selected Researchers
Table-4.2: Lead-time Data
Table-4.3: Setup Cost Data
Table-4.4: Optimal solution in Different Scenarios
Table-4.5: Comparison of the Minimum Total Cost per Unit with Backorder Discount
Table-4.6: Summary of Cost Saving per Unit
Table-5.1: Solution Corresponding to Different Value of k and M
Table-5.2: Computational Results with Respect to Different Values of I_p
Table-5.3: Computational Result with Respect to Different Values of □
Table-5.4: Computational Results with Respect to Different Values of k and M
Table-5.5: Effect of Variation of ‘r’ on the Optimal Solution
Table-5.6: Computational Results with Respect to Different Values of i_1 and M
Table-5.7: Effect of ‘b’ on the Optimal Solution (i_1=1.2)
Table-5.8: Optimal Solution for Different Values of □
Table-6.1: Input Data
Table-6.2: Input Imprecise Data for Shape Parameters
Table-6.3: Optimal Solution
Table-6.4: Effect of Variation in Parameters a, b, and c on Demand, Setup Cost and Total Profit
Table-6.5: Effect of Variation in Parameters γ and δ on Demand and Total Profit
Table-6.6: Sensitivity with Respect to Different Parameters
Table-8.1: Production Rate
Table-8.2: Demand Rate
Table-8.3: Total Inventory cost of Different Player for Various Deliveries
Table-8.4: Effect of Deterioration Rate on Inventory Cost of the Integration View
Table-8.5: Effect of Θ on Inventory Cost of the Integration View
Table-8.6: Effect of Different Cost Parameters on TC_p, TC_d, TC_r, TC
Table-8.7: Effect of Demand on Parameters of the Integration View
CERTIFICATE OF THE SUPERVISORS

DECLARATION BY THE CANDIDATE

ACKNOWLEDGEMENT

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: An Overview

CHAPTER 2: Literature Survey

CHAPTER 3: Effect of Advertisement and Learning on Optimal Inventory Control Policy: An Algebraic Approach

CHAPTER 4: Chebyshev Inequality and Minimax Distribution Free Procedure in Mixed Inventory Model with Effective Investment to Reduce Lead-Time and Setup Cost with Imprecise Demand

CHAPTER 5: Retailer’s Optimal Replenishment Policy with Trade Credit in Inflationary and Fuzzy Environment with Different Demand Pattern

CHAPTER 6: Volume Flexibility and Reliability in Production Inventory Model with Imprecise Cost Parameters

CHAPTER 7: Coordinating a Two-Level Supply Chain under Inflation with Price Discounted Promotional Demand in an Imprecise Planning Horizon

CHAPTER 8: Three-Stage Supply Chain Coordination under Fuzzy Random Demand and Production Rate with Imperfect Production Process

CHAPTER 9: Conclusion and Scope for Future Research

List of Published/Accepted/Communicated Papers and Attended National and International Conferences/Seminar
Chapter-1
An Overview

Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Motivation for Maintaining Inventory</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Need of Inventory Modelling in Fuzzy Environment</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Advantage of Inventory Modelling in Fuzzy Environment over Crisp Environment</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Relevant Cost Parameters of Inventory</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Basic Concepts and Terminologies</td>
<td>10</td>
</tr>
<tr>
<td>1.6.1 Classical Set Theory</td>
<td>10</td>
</tr>
<tr>
<td>1.6.2 Fuzzy set</td>
<td>10</td>
</tr>
<tr>
<td>1.6.3 Different Shapes of Membership Function of Fuzzy Number</td>
<td>11</td>
</tr>
<tr>
<td>1.6.3.1 Trapezoidal Fuzzy Number</td>
<td>12</td>
</tr>
<tr>
<td>1.6.3.2 Triangular Fuzzy Number</td>
<td>12</td>
</tr>
<tr>
<td>1.6.4 \square-Level Fuzzy Interval</td>
<td>12</td>
</tr>
<tr>
<td>1.6.5 \square-Level Fuzzy Point</td>
<td>13</td>
</tr>
<tr>
<td>1.6.6 \square-cut of Fuzzy Number</td>
<td>13</td>
</tr>
<tr>
<td>1.6.7 Decomposition Principle</td>
<td>13</td>
</tr>
<tr>
<td>1.6.8 Extension Principle</td>
<td>14</td>
</tr>
<tr>
<td>1.6.9 Properties of Second Function Principle</td>
<td>15</td>
</tr>
<tr>
<td>1.6.10 Defuzzification Method</td>
<td>17</td>
</tr>
<tr>
<td>1.6.10.1 Signed Distance</td>
<td>17</td>
</tr>
<tr>
<td>1.6.10.2 Centroid Method</td>
<td>19</td>
</tr>
<tr>
<td>1.6.10.3 Graded Mean Integration Representation</td>
<td>20</td>
</tr>
<tr>
<td>1.6.11 Interval Arithmetic</td>
<td>21</td>
</tr>
<tr>
<td>1.6.12 Fuzzy Random Variable (FRV) and its Expectation</td>
<td>22</td>
</tr>
<tr>
<td>1.6.13 Possibility and Necessity</td>
<td>22</td>
</tr>
<tr>
<td>1.6.14 Geometric Programming Technique</td>
<td>24</td>
</tr>
<tr>
<td>1.6.15 Learning Curve</td>
<td>26</td>
</tr>
<tr>
<td>1.6.16 Arithmetic-Geometric Inequality</td>
<td>27</td>
</tr>
<tr>
<td>1.6.17 Chebyshev Inequality</td>
<td>27</td>
</tr>
<tr>
<td>1.7 Motivation and Outlines of the Research</td>
<td>28</td>
</tr>
<tr>
<td>Reference</td>
<td>33</td>
</tr>
</tbody>
</table>
Contents:
2.1 Introduction..34
2.2 Literature Survey of Inventory Models in Fuzzy Environment...35
2.3 Literature Survey of Inventory Models with Trade Credit...39
2.4 Literature Survey of Inventory Models with Lost Sale..41
2.5 Literature Survey of Inventory Models with Time Value of Money..44
2.6 Literature Survey of Inventory Models with Volume Flexibility..45
2.7 Literature Survey of Inventory Models with Life Time..46
2.8 Literature Survey of Supply Chain Model...47
2.9 Literature Survey of Inventory Models in Few More Areas...49
 2.9.1 Literature Survey of Inventory Models using Algebraic Method..49
 2.9.2 Literature Survey of Inventory Models with Lead-Time..50
 2.9.3 Literature Survey of Inventory Models with Advertisement Dependent Demand......................53
References..55
Chapter-3

Effect of Advertisement and Learning on Optimal Inventory Control Policy: An Algebraic Approach

Contents:
3.1 Introduction.. 65
3.2 Assumptions
 Assumptions.. 68
 3.2.1
 Notations.. 68
 3.2.2
 Notations.. 68
3.3 Model
 Formulation.. 69
 3.3.1 Imprecise Demand Rate with Partial Backlogging.. 69
 3.3.1.1 Mathematical Formulation of Model... 69
 3.3.1.2 Fuzzy Model and Solution Procedure... 70
 3.3.2 Demand Rate is Imprecise as well as Depends upon Frequency of Advertisement
 3.3.2.1 Mathematical Formulation of Model... 74
 3.3.2.2 Fuzzy Model and Solution Procedure... 74
 3.3.2.3 Analysis on the Basis of Theoretical Results.. 78
3.4. Numerical Examples.. 79
<table>
<thead>
<tr>
<th>3.5.</th>
<th>Summary and Concluding Remarks</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References</td>
<td>92</td>
</tr>
</tbody>
</table>
Chapter-4
Chebyshev Inequality and Minimax Distribution
Free Procedure in Mixed Inventory Model with
Effective Investment to Reduce Lead-Time and
Setup Cost with Imprecise Demand

Contents:
4.1 Introduction...93
4.2 Assumptions and Notations..96
 4.2.1 Assumptions..96
 4.2.2 Notations...97
4.3 Model Formulation..98
 4.3.1 Fuzzy Model and Solution Procedure...99
 4.3.2 Analysis on the Basis of Theoretical Results..106
4.4 Numerical Example..107
4.5 Summary and Concluding Remarks...109
References...110

The paper based on this chapter has been accepted for publication in “International Journal of Operation Research”, 13(1), 2013. [ISSN: 1745-7653]
Chapter-5
Retailer’s Optimal Replenishment Policy with Trade Credit in Inflationary and Fuzzy Environment with Different Demand Pattern

Contents:
5.1 Introduction ..113
5.2 Retailer’s Ordering Policy when Demand is Credit Period or Selling Price Sensitive……115
 5.2.1 Assumptions ...116
 5.2.2 Notations ..117
 5.2.3 Formulation of Mathematical Model ..118
 5.2.4 Fuzzy Inventory Model ..121
5.3 Retailer’s Ordering Policy when Demand Depends on Initial Stock-level………………122
 5.3.1 Formulation of Mathematical Model ..122
 5.3.2 Fuzzy Inventory Model ..124
5.4 Numerical Examples ..124
5.5 Summary and Concluding Remarks ..131
 References ..131
Chapter-6

Volume Flexibility and Reliability in Production Inventory Model with Imprecise Cost Parameters

Contents:

6.1 Introduction..135

6.2 A Fuzzy Multi-item Production Model with Reliability and Flexibility under limited Storage Capacity with Deterioration via Geometric Programming...139

6.2.1 Assumptions...139

6.2.2 Notations...140

6.2.3 Mathematical Formulation of Inventory Model...141

6.2.4 Crisp Model...141

6.2.5 Fuzzy Inventory Model with Imprecise Costs and Resources.................................143

6.2.6 Primal Problem...144

6.2.7 Dual Problem..144

6.3 Volume Flexible Production Policy with Repairable Defective Product.........................147

6.3.1 Assumptions...147

6.3.2 Notations...147

6.3.3 Mathematical Formulation of Inventory Model...148

6.4 Numerical Examples...151

6.5 Summary and Concluding Remarks..159

References..The paper based on the first section of this chapter has been published in International Journal of Mathematics in Operational Research, 3(1), 2011. [ISSN: 1757-5869] The paper based on the second section of this chapter has been published in Proceedings of the 2011 International Conference on Advances in Supply Chain and Manufacturing Management, IIT Kharagpur, India, December 16–18, 2011.
Chapter-8
Three-Stage Supply Chain Coordination under Fuzzy Random Demand and Production Rate with Imperfect Production Process

Contents:
8.1 Introduction..175
8.2 Assumptions and Notations...178
 8.2.1 Assumptions...178
 8.2.2 Notations...178
8.3 Formulation of Integrated Inventory Model...180
 8.3.1 Producer’s Inventory Model...181
 8.3.2 Distributor’s Inventory Model...183
 8.3.3 Retailer’s Inventory Model..184
 8.3.4 Crisp Integrated Model...186
 8.3.5 Fuzzy Integrated Model...186
8.4 Numerical Example..189
 8.4.1 Example Data..189
 8.4.2 Solution Procedure...189
 8.4.3 Sensitivity Analysis..192
The paper based on this chapter has been accepted for the publication in International Journal of Operational Research. [ISSN: 1745-7653]