
 

 

 

 
 

 

Determination of Energy Bands of 

Solids 

 

 

 

In this Chapter we discuss few conventional approaches like, Wigner-Seitz 

Cellular Method, Nearly Free Electron Theory, Tight Binding Approximation, 

Kronig-Penney Model, Green Function Method, Density Functional Theory, 

Muffin-tin Approximation used for determining the energy bands of solids.  

 

2.1 Wigner-Seitz Cellular Method: 

This is the first band structure determination cellular method proposed by 

Wigner and Seitz (1934). They considered the unit cell as truncated polyhedron 

and wrote the crystalline wave function as a linear combination of atomic 

functions. The unit cells are latter called as Wigner-Seitz cells. They assumed the 

potential inside the polyhedron as spherically symmetric even though it is 

perturbed by the neighbouring atoms.  

 

In this method, the crystalline wave function is written as  

 

,

( , ) ( ) ( , ) ( , )                         lm lm l
l m

A Y R Eψ θ φ=∑k r k r      (2.01) 

where 0,  1,  2.....l =   and m varies from l− to l+ . lmA  is the expansions coefficients 

and ( , )lR E r is the radial solution of the Schrödinger equation   
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2

2 2

( 1)
( ) ( )l

l

d R l l
V r E rR

dr r

+ 
= + − 
 

r .  

( )V r is the spherically symmetric potential inside the Wigner-Seitz cell. 
 

 

At the surface of the polyhedron, the following boundary conditions are to be 

imposed on the wave function 

                    .
2 1( , ) ( , )i teψ ψ= k

k r k r
 

and               
.

2 1. ( , ) . ( , )i t
eψ ψ∇ = ∇k

n k r n k r  

 

where n  is the unit vector normal to the faces of the unit cell and t  is the lattice 

translation vector. 

 

The maximum l  value is taken as 2 in the expression (2.01) so as to include 

the d states. This leads to only a finite number of expansion coefficients and one 

has to apply the boundary conditions only for that many set of points on the 

surface of the cell. The imposition of this finite set of boundary conditions leads to 

a set of homogeneous equations which in turn determines the order of the secular 

determinant. One has to search for the zeros of the determinant to find the eigen 

values for a given k point and this has to be repeated for different k points in the 

Brillouin zone to get the band structure. 

 

In this method the potential employed is that due to a single ion and it does 

not take into account the interactions arising from the neighbours. It has a 

discontinuous derivative across the boundary between the cells. But in reality, it is 

continuous and flat in the region across the cell boundary. The second difficulty is 

the arbitrary selection of points in the cell boundary and the enormous amount of 

labour involved in matching the boundary conditions. 

 

2.2 Nearly Free Electron Theory: 

The nearly-free electron theory is a modification of the free-electron gas 

model (Ashcroft and Mermin, 1975; Dekker, 1957; Elliot and Gibson, 1974; Kittel, 
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1971). It includes a weak periodic perturbation meant to model the interaction 

between the conduction electrons and the ions in a crystalline solid. This model, 

like the free-electron model, does not take into account electron-electron 

interactions; that is, the independent-electron approximation is still in effect. In this 

model, the crystal potential is assumed to be very weak as compared to the 

electronic kinetic energy so that the electrons behave essentially like free particles. 

The weak periodic potential introduces only a small amount of perturbing effect on 

the free electrons in the solid. So this model demands the application of very 

elementary perturbation theory. In the following, the one dimensional case is 

discussed. 

 

Let ( )V x  denote the potential energy of an electron in a linear lattice of 

lattice constant ‘a’. The Schrödinger equation to be solved is  

 

            

2

2 2

2
( ) 0          

d m
E V

dx

ψ
ψ+ − =

�
     (2.02) 

If 0,V =  it describes a free electron with wave function (unperturbed) ( )k xφ  and 

the free energy 0 ( )E k  given by 

1
( ) exp( ) k x ikx

Na
φ =       (2.03) 

 

                                                      

2 2
0 ( )  

2

k
E k

m
=
�

                  (2.04)                         

 

Here, the wave function is normalised over a crystal containing N atoms. In this 

case all values of k are allowed. 

 

Now, as in the free electron theory a very weak periodic potential is 

introduced, this will perturb the free electron wave function and the energy. 

Therefore the real wave function and the energy can be calculated by using the 

perturbation theory.  
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As the potential is periodic, it can be expressed as a Fourier series of the 

form: 

    
0

2
( ) exp( )               n

n

V x V i nx
a

π

=

= −∑               (2.05) 

The perturbed wave function (upto first order) becomes 

*

0 0
( ) ( )  ,  where 

( ) ( )
k k k k k

k k

k V k
x x k V k V dx

E k E k
ψ φ φ φ φ′

′≠

′
′= + =

′−
∑ ∫  

    
0

1
( )    

( ) ( )

ikx ik x
k

k k

k V k
x e e

L E k E k
ψ ′

′≠

′ 
⇒ = + 

′− 
∑

    (2.06)  

where L Na=  

 

The perturbed energy, correct to second order is  

2

0

0 0
( ) ( )

( ) ( )

ik x

k k

k V k
E k E k e

E k E k

′

′≠

′
= +

′−
∑                      (2.07) 

Now,  

 

2

* ( ) ( )

00

1 1
  

nL i x
ik x ikxa

k k n
n

k V k V dx e V e e dx
L L

π

φ φ
−′−

=

 
 ′ = =
 
 
∑∫ ∫  

          

2

* ( )

0 0

*

1
 

2
    If  

                                        0,      otherwise

nL i x
i k k xn a

k k
n

k k n

V
k V k V dx e e dx

L L

n
k V k V dx V k k

a

π

φ φ

π
φ φ

−
′−

=

′⇒ = =

′ ′⇒ = = − =

=

∑∫ ∫

∫  

 

Consequently the wave function and energy becomes 

 

        

2

0 00

1
( ) 1     

2
( ) ( )

n
i x

ikx n a
k

n

V
x e e

nL E k E k
a

π

ψ
π

−

≠

 
 

= + 
 − −
 

∑        (2.08) 
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and                                    

2

0

0 00

( ) ( )   
2

( ) ( )

n

n

V
E k E k

E k E k n
a

π
≠

= +

− −
∑     (2.09) 

This expression of ( )E k  is satisfactory if 

i) nV  tends to zero rapidly as n  increases. 

ii) The denominator i.e. 0 0 2
( ) ( )E k E k n

a

π
− −  is not very small 

Now, 

22
0 0 22 2
( ) ( )

2
E k E k n k k n

a m a

π π  
− − = − −  

   

�
 becomes very small when  

0 0

2
2

2
( )

2

E k E k n
a

k k n
a

π

π

 
− 

 

 
⇒  

 
−

�

�

 

and this happens for 
n

k
a

π
= ± , these k  values are near to zone boundary. 

 

It can be concluded that the plane wave function given by Eq. (2.08) can 

not be considered at near to zone boundary and hence the energy is given by Eq. 

(2.09). 

 

The wave function in this case must arise from a superposition of an 

incident wave propagating along +ve X direction and a reflected wave in the 

opposite direction. In this situation the electron wave is reflected at
n

k
a

π
= ± . We 

may therefore write the wave function as  

 
0

2

( )       

n
i x

ikx a
k nx e A A e

π

ψ
− 

 = +
  

 

        
0

2
( )

( )    

n
i k x

ikx a
k nx A e A e

π

ψ
−

⇒ = +                           (2.10) 
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Here, 0
A and nA  are constants referred to incident and reflected waves 

respectively.  

Now, using this value of ψ as given by Eq. (2.10) and xV  as given by Eq. 

(2.05) in Eq. (2.02), we get 

 

0 0

2 22
22

22
     

2 0
n n n

n nni k x i k xi xn a aikx ikxaA k e A k e V e A e A e
m a n

π ππ
π

′

      ′
− −−             − − − − + +∑ 

    ′ ≠      

�

 

0

2

( )   n

n
i k x

aikx
E k A e A e

π  
−  

  = +
 
  

 

 

Putting 
0

2 2

( )
2

k
E k

m
=
�

 and 
0

2 2
2

( )  
2

n
E k k

m a

π 
′ = − 

 

�
in above equation and 

rearranging the terms we get, 

 

0 0

2 2

0 0( ) ( ) ( ) ( )

0

2 2

0                                                                      (2.11)

0

n n

n n

n ni k x i x
aikx ikxaA E k E k e A E k E k e A V e e

n

n n
i k x

a a
A V e

n

π π

π π

′

′

  ′
− − 

     ′− + − + ∑       ′ ≠

′ 
− − 

 + =∑
′ ≠

 

Multiplying both sides of Eq. (2.11) by 
ikx

e and integrating over 0x = and 

x a= , we get,     

                                             
0 *

0 ( ) ( ) 0                                   n nA E k E k A V − + =
  

                         (2.12)                                                       

where,
* n nV V− =  

Similarly multiplying both sides of Eq. (2.11) by 
ik xe

′−
and integrating over 

0x = and x a= , we get    
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0

0 ( ) ( ) 0                n nA V A E k E k ′+ − =
  

                      (2.13) 

 

For a non trivial solution, the determinant of the coefficients must vanish. The 

resulting quadratic equation has two solutions: 

2 2 2 2 2 2
2

2 2
1 2 2

( ) 4   
2 2 2 2 2

n

k n k n
E k k k V

m m a m m a

π π
          = + − ± − − +                 

� � � �
(2.14) 

Therefore, at the zone boundary i.e. at 
n

k
a

π
= ± , there are two energies viz., 

      

0

0

        ( ) ( )

( ) ( )            

n

n

E k E k V

n
E k E V

a

π

= ±

⇒ = ±
                           (2.15) 

 

Here, the first term in the R. H. S. of Eq. (2.15) represents the free particle energy 

associated with the zone boundary. At the zone boundary 
n

k
a

π
= ± , standing waves 

having different energies are formed. Since difference of their energies represents 

an energy gap in the  vs E K  curve, the width of the gap is 2 nV , where nV  is the 

n
th

 Fourier coefficient in the Fourier series expansion of periodic potential. Thus in 

every zone points there is a gap in the energy of width 2 nV  centred around the 

energy value 
22

2

n

m a

π 
 
 

�
and at other values of ,k the energy is continous. 

 

2.3 Tight Binding Approximation: 

Tight binding approximation (TBA) is a convenient model for the 

description of electronic structure in molecules and solids. It provides the basis for 

construction of many body theories. Slater and Koster called it the tight binding or 

“Bloch” method (Slater and Koster, 1954). “Slater–Koster” table is used to 

formulate Hamiltonians for tight bound cases. The TBA model does not require to 

approximate the crystal periodic potential as a sequence of square wells and 
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barriers. The TBA describes situations for which the atomic potential is quite large 

and the wave function for an electron belonging to an atom forming part of a 

crystal remaining localized about the atomic core -- hence the name “tight 

binding.” The outer-electron wave functions slightly overlap between neighbouring 

atoms. Further this model provides a way of evaluating the allowed energy values 

of an electron in a solid, starting from the energy levels of neutral atoms. It 

accounts the energy changes in the level because the charge distribution of the 

adjacent atoms overlap when atoms are brought together to form a solid.  

 

Let us consider that the potential function associated with an isolated atom 

is 0 ( )V r . Then the Schrödinger equation is written as, 

      
2

02

2
[ ( )] ( ) 0

m
E V r rψ ψ∇ + − =

�
 

Let 0
ψ be the non degenerate ground state wave function corresponding to 

the ground state energy 0
E . 

 

 

 

 

 

 

 

 

 

Let r and nr  be the position vector of an electron (at P) and n
th

 atom of the crystal 

as shown in figure 2.1 above. 

 

As in the tight binding model, it is assumed that only nearest neighbour 

atoms have overlapping electron wave functions, the electron wave function near 

the n
th

 atom is approximately independent of the other atoms and is approximately 

Figure 2.1: Two dimensional arrangements of atoms at lattice sites  

r r
n

−
P

n

r

n
r
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given by 0 ( )nψ −r r .  The crystal wave function can be written as a linear 

superposition of atomic wave functions of the form: 

0( ) ( )         nk n
n

aψ ψ= −∑r r r      (2.16) 

As electrons have the form of Bloch wave function, the coefficients na  

must describe a progressive wave within the crystal lattice, i.e.
. ni

na e= k r
. Thus 

we have, 
 

.
0( ) ( )     n

n

i
k

n

eψ ψ= −∑ k r
r r r      (2.17) 

With this wave function, the Schrödinger equation for the crystal wave function 

becomes 

 

                                      

2
2  ( ) ( ) ( )

2
k kV r E

m
ψ ψ

 
− ∇ + = 
  

�
r r  

      

2
2

0 0( ) ( ) ( ) ( ) ( )
2

n n k kV V r V E
m

ψ ψ
 

⇒ − ∇ + − + − − = 
  

�
r r r r r r  

     [ ]0 1 ( ) ( )k kH H Eψ ψ⇒ + =r r  

       ( ) ( )   k kH Eψ ψ⇒ =r r                               (2.18) 

 

where, 
2

2
0 0 1 0 0 1( ),  ( ) ( ) and 

2
n nH V H V V H H H

m
= − ∇ + − = − − = +
�

r r r r r  

The quantity 1H represents the potential energy of the electron in the crystal at the 

point P (due to all the atoms) minus the potential energy of the electron at the same 

point when there is only a single atom located at n . But o o o oH Eψ ψ= , so  

 

            
. .

( )  ( )  ( )    n n
n n

i i
o k o o o o

n n

H H e E eψ ψ ψ= − = −∑ ∑k r k r
r r r r r     (2.19) 

The energy of the electron in the crystal ( )E k can be found by evaluating the 

expectation value of the Hamiltonian operator as  
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[ ]* *
1 1

0* *

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

k o k k k

k k k k

H H dr H dr
E k E

dr dr

ψ ψ ψ ψ

ψ ψ ψ ψ

+
= = +
∫ ∫

∫ ∫

r r r r

r r r r
 

Here 
( )* *

0 0( ) ( ) ( ) ( )   n m
m n

i
k k

m n

dr e drψ ψ ψ ψ−= − −∑∑∫ ∫
k r r

r r r r r r  

At ,m n=  
* *

0 0( ) ( ) ( ) ( )  
n nk k

n

dr dr Nψ ψ ψ ψ= − − =∑∫ ∫r r r r r r . N is the total 

number of electrons (atoms) in the crystal. So  

 

       [ ]( ) *
0 0 0 0

1
( ) ( ) ( ) ( ) ( )n mi

m n n
n m

E k E e V V dr
N

ψ ψ− 
= + − − − − 

 
∑ ∑ ∫

k r r
r r r r r r r  

Since all the terms in the summation over n  are identical because of the periodicity 

of the lattice potential, we need to consider only one term and multiply the result 

by N  which is the number of terms in the sum. If we take 0n = , then 

 

[ ]. *
0 0 0 0( ) ( ) ( ) ( ) ( )  mi

m
m

E k E e V V drψ ψ−= + − −∑ ∫
k r

r r r r r     (2.20) 

To simplify further, we write a term for 0m =  (i.e. m
th

 atom is at the origin and 

hence 0m =r ) and the other terms in the summation for 0m ≠  i.e.  

 

[ ]

[ ]

*
0 0 0 0

. *
0 0 0

0

( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( )         mi
m

m

E k E V V dr

e V V dr

ψ ψ

ψ ψ−

≠

= + −

+ − −

∫

∑ ∫
k r

r r r r

r r r r r
     (2.21) 

 

For 0,m =  the integral in above equation gives  

                                         [ ]*
0 0 0( ) ( ) ( ) ( )  V V drψ ψ α− = −∫ r r r r  

and for the nearest neighbour atoms           

                                   [ ]*
0 0 0( ) ( ) ( ) ( )  m V V drψ ψ β− − = −∫ r r r r r   

whereα and β are known as overlap integrals. Since [ ]0( ) ( )V V−r r  is negative 

thereforeα and β are positive. Consequently the Eq. (2.21) can be written in a 

simplified form as 
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.

0 ( )          mi

m

E k E eα β −= − − ∑ k r
                 (2.22) 

where the summation is to be carried out over the nearest neighbours only. It is 

observed that the Eq. (2.22) consists of a constant term 0E α−  together with the 

term dependent on k . It is the latter term that transforms the discrete atomic levels 

into the energy bands in the solid. 

 

2.4 Kronig-Penney Model: 

In the free electron theory, it is assumed that the potential to which the 

valence electrons are subjected is constant and therefore, it can be set equal to zero 

when solving the Schrödinger equation. Obviously, this is not true for the valence 

electrons in ionic and covalent solids, where the electrons are localized near the 

parent nuclei. Thus, a constant potential should be replaced by a periodically 

varying potential ( )V r . In 1931, Kronig and Penney originally proposed a one 

dimensional model to describe the behaviour of electrons moving under a periodic 

potential (Kronig and Penney, 1931). The Kronig and Penney model is a simplified 

one-dimensional quantum mechanical model of a crystal. With the help of this 

model one obtains energy bands and energy band gaps in a crystal.  

 

 Kronig and Penney suggested a potential in the form of an array of square 

well potential as shown in figure 2.2. 

 

Figure 2.2: Ideal periodic square well potential suggested by Kronig & Penney 
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Following the above form of the potential we can write the two Schrödinger 

equations as: 

                            

2
2 2

2 2

2
0,   for 0 ,  where 

d mE
x a

dx

ψ
α ψ α+ = < < =

�
     (2.23) 

                                           

and        

2
2 2

2 2

2 ( )
0,   for 0,  where 

d m V E
d x

dx

ψ
γ ψ γ

−
− = − < < =

�
                (2.24)   

           

 Since the expected solutions of the above Schrödinger equations have the 

form of Bloch function, this requires both ψ and 
d

dx

ψ
 to be continuous throughout 

the crystal. Therefore, if we suppose that the general solution of the equations 

(2.23) and (2.24) are of the form 

                                               1
( ) i x i xx Ae Beα αψ −= +                              (2.25) 

and  

                                       2
( )  for x x
x Ce De E V

γ γψ −= + <                  (2.26) 

 

where A, B and C, D are the constants in the region 0 x a< <  and 0d x− < <  

respectively, the values of 
1( )xψ and 

2 ( )xψ can be obtained by applying the 

following boundary conditions, 

                                    ( ) ( )
1 20 0

x x
x x

ψ ψ=
= =

                           (2.27) 

 

                               1 2

0 0

d d

dx dx
x x

ψ ψ   
=   

      = =

             (2.28) 

 

                               ( ) ( )
1 2

x x
x a x d

ψ ψ=
= =−

                                           (2.29) 

and  
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                                        1 2
d d

dx dx
x a x d

ψ ψ   
=   

      = = −

                                    (2.30) 

 

Since, for a periodic lattice with ( ) ( )V x a V x+ = , the wave function will exhibit 

the same periodicity, therefore, we can write 

                                          
( )

( ) ( )
ik a d

x x a d e
k k

ψ ψ
− +

= + +   

 

Incorporating this requirement at x d= −  & x a= , the Eqs. (2.29) and (2.30) 

becomes 

                                             
( )

( ) ( )
2 1

ik a d
d a eψ ψ

− +
− =                             (2.31) 

and  

                                       ( )2 1
d d ik a d

e
dx dx

x ax d

ψ ψ    − +  =  
     =  = −

                      (2.32) 

 

Now, applying the boundary conditions in Eq. (2.27), (2.28), (2.31) and (2.32), we 

obtain the following modified equations: 

 

                                 ( )

( )

( ) ( )

                

         

     [ ]

[ ]

d d ik a d i a i a

d d ik a d i a i a

A B C D

A B C D

C D A B

C D A B

i

e e e e e

e e i e e e

γ γ α α

γ γ α α

γα

γ γ α

− − + −

− − + −

+ = +

− = −




+ = +


+ = − 

    (2.33) 

 

This Eq. (2.33) will have the non vanishing solutions if and only if the 

determinants of the coefficients A, B, C and D vanishes i.e.                              
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1 1 1 1

0( ) ( )

( ) ( )

i i

ik a d i a ik a d i a d d
e e e e

ik a d i a ik a d i a d d
i e i e e e

α α γ γ

α α γ γ

α α γ γα α γ γ

− −

− −
=− + + − + − −

− −

+ + − + − −
− −

 

 

On simplifying this determinant, we obtain  

                   

2 2
sinh( )sin( ) cosh( )cos( ) cos[ ( )]

2
d a d a k a d

γ α
γ α γ α

αγ

−
+ = +  

In order to simplify the above situation, Kronig and Penney assumed that the 

product of the height and the width of the potential barrier, ,Vd remains finite; 

when  V → ∞ and 0d → . Under this assumption the above equation becomes 

 

   

2
sin( ) cos( ) cos( )

2

d
a a ka

γ
α α

α
+ =            (2.34) 

 

From the above equation we see that the L. H. S of Eq. (2.34) is a function of 

energy E while the R. H. S. depends only upon the wave vector k.   

 

 

Figure 2.3:  Plot of 
2

sin( ) cos( )  cos( )
2

d
a a ka

γ
α α

α
+ Vs  
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Analysis of Eq. (2.34) leads to following inferences: 

 
 

1. Allowed range of αa permits a wave mechanical solution to exist as shown 

in figure 2.3. Thus the motion of electrons in a periodic potential is 

characterized by the bands of allowed energy separated by forbidden 

regions. 

 

2. As the value of αa increases each successive band gets wider and other 

gets narrower. This is because of the fact that the first term on the left hand 

side of Eq. (2.34) on an average decreases with increasing αa. 

 

Figure 2.4 shows a plot of energy E as a function of k. If k is to be real, the 

magnitude of cos ka should be less than 1 (i.e. cos 1ka < ) which corresponds to 

the allowed energy band. On the other hand, those value of energy E for 

which cos 1ka > , only the imaginary values of k are possible which correspond to 

the forbidden bands.  

 

          

 

Figure 2.4:  Energy Vs wave vector for a one dimensional lattice 

 

 



Chapter 2                                                                                                                 47 

__________________________________________________________________ 

 

 

2.5 Green’s Function Method: 

To calculate the energy bands of solids one can apply Green's function 

methods. The poles of the Green's function corresponds to the energy bands of a 

solid.  

 

The Green’s function method for calculating energy bands in solids shares 

with other methods such as those of  augmented (Slater, 1937) or orthogonalized 

plane waves (Herring, 1940) and various cellular methods (Slater, 1934; Lage  and 

Bethe, 1947; Howarth and Jones, 1952; Kohn, 1952), the advantage of taking 

polyhedral shape of the atomic cell. With these other methods, it thus represents a 

major advance over the spherical approximation of Wigner and Seitz (Wigner and 

Seitz, 1933, 1934) which has been extensively used in band calculations on metals. 

 

An especial advantage of the Green’s function method is its rapid 

convergence. This is much better than that found in calculations with other 

methods as reported in the literature, though it is probably rivalled by recent work 

with forms of the Augmented Plane Waves (APW) method. In particular, the 

method permits accurate calculation at points of low symmetry within the Brillouin 

zone without requiring the use of unmanageably large determinants. This method 

has further advantage that the calculations are relatively simple and can be done by 

hand in general, once tables are prepared of “structure constants” which are 

characteristic of lattice type but independent of the particular crystal potential or 

lattice constant. 

 

The mathematical basis of calculations of energy bands in periodic lattices 

using the Green’s function method was formulated by Kohn and Rostoker (1954). 

In this method the problem of solving Schrödinger equation in a periodic potential 

is studied from the point of view of the variation-iteration method. This approach 

leads to a very compact scheme if the potential ( )V r  is spherically symmetric 
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within the inscribed spheres of the atomic polyhedra and constant in the space 

between them.  

 

Introducing the method of Green's functions we have to solve an integral 

equation instead of the Schrödinger equation. 

 

Let ( )V r be a periodic potential with periodicity property ( ) ( )sV V +=r r r . 

In order to get the energy bands one seek propagating solutions 

             .( ) ( )         ir e rψ ψ= sk r                  (2.35) 

of Schrödinger’s equation,   

    ( )2 ( ) ( ) 0       V E ψ−∇ + − =r r                  (2.36) 

Here k is the crystal momentum vector, sr is any translation vector of the lattice 

 

Now, we introduce the Green's function defined by  

         2( ) ( , ) ( )           E G δ′ ′−∇ − = − −r r r r                 (2.37) 

 

The Green’s function has the following property 

i)   
*( , ) ( , )G G′ ′=r r r r , hermitian property and  

ii)       
.

( , ) ( , )si
sG + e G ′= k r

r r r r r  

 

If nK  is the reciprocal lattice vector defined by                    

                                                . 2 (integer),  1,  2,  3,.....n i iτ π= × =K  

 

Then G can be written as  

2

exp[ ( ). ]1
       

( )

( )
( , ) n

n n

i

E
G

τ

+ −
= −

+ −

′
′ ∑

K k

K k

r r
r r     (2.38) 

whereτ is the volume of the atomic polyhedron 

 

Alternatively, G can be expressed in the form 

.
exp1

( , )    
4

s
s i

ss

ik
G e

π

 
 

− −′
= −′

− −′
∑ k r

r r r
r r

r r r
    (2.39) 
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where                  
,           0

      
( ),    0

k E E

k i E E





= + >

= + − <
      (2.40) 

 

Eq. (2.38) is the standard expansion of a green function in terms of the eigen 

functions of the homogeneous boundary value problem. Kohn and Rostoker have 

shown that ( )ψ r  satisfies the integral equation  

 

 ( ) ( , ) ( ) ( )      G V d
τ

ψ ψ τ′ ′ ′= ∫r r r r r      (2.41) 

The integral Eq. (2.41) is equivalent to the variational principle  

 

0    δΛ =        (2.42) 

where  

       ( ) ( ) ( ) ( ) ( ) ( ) ( )* *     ( , )   VV d G V d d
τ ττ

ψψ ψ τ ψ τ τ
′

′′ ′ ′Λ = − ∫ ∫∫ r r r r r rr r r (2.43) 

It should be noted that δΛ vanishes for arbitrary variations of ψ . 

Now let us use a trial function of the form ,     i i
n

i i iC iC a bϕψ = +=∑  and 

substitute it in Eq. (2.43), we get 

     
*

;
, 0

     
n

i i j j
i j

C C
=

Λ = Λ∑                  (2.44) 

where ;i jΛ  is hermitian and is takes the form 

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
;      ( , ) i j i j i jVV d G V d d

τ ττ

ϕϕ ϕ τ ϕ τ τ
′

= ′ ′ ′ ′Λ − ∫ ∫∫ r r r r r r r r r (2.45) 

The conditions   0,     0,  1,............ ,                     
i i

i n
a b

∂Λ ∂Λ
= = =

∂ ∂
     (2.46) 

 

which follow from Eq. (2.42) give the linear equations  

;
0

 0,     0,  1,............ ,  
n

i j j
j

C i n
=

Λ = =∑      (2.47) 

which are compatible only if 
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           ;det 0      i j =Λ       (2.48) 

Since, for given functions iϕ , the ;i jΛ are functions only of k and E, Eq. (2.48) 

gives the required connection between k and E which in other words gives the 

required energy band.  The coefficients Ci can be determined from Eq. (2.47) after 

Eq. (2.48) has been solved. 

 

The detailed treatment is discussed by Kohn & Rostoker (1954), Ham & 

Segall (1961) and Kenan & Sievert (1974). H. Fock applied this technique for 

calculating the energy bands for a Perfect crystal and a Crystal with impurities 

(Fock, 1971). 

 

The disadvantage of using the general Green’s function is that it is a 

complicated function of the energy, which must be searched for the location of 

roots which yield the eigen energies of the problem. The Green’s function must be 

evaluated many times in a computationally fast and efficient way for a tractable 

numerical scheme to be developed. 

 

2.6 Density Functional Theory: 

A large majority of the electronic structures and band plots are calculated 

using the density functional theory (DFT) which is not a model but rather an ab 

initio theory (Hohenberg and Kohn, 1964). In DFT, ground state of a system and 

the charge density of the relevant physical quantity are considered. DFT has 

proved to be highly successful in describing structural and electronic properties in 

a vast class of materials, ranging from atoms, molecules and simple crystals to 

complex extended systems (including glasses and liquids). For these reasons DFT 

has become a common tool in first-principle calculations aimed at describing or 

even predicting properties of molecular and condensed matter systems. 

 

In contrast to the Hartree-Fock picture, which begins conceptually with a 

description of individual electrons interacting with the nuclei and all other 
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electrons in the system, DFT starts with a consideration of the entire electron 

system. If there are N electrons in the system, the wave function of the electron 

system is a function of 3N variables. However, within DFT, all aspects of the 

electronic structure of the system of interacting electrons in an 'external' potential 

( )extV r  are completely determined by the electronic charge density ( )n r .  

 

In DFT, the total energy is decomposed into three contributions, a kinetic 

energy, a Coulomb energy due to classical electrostatic interactions among all 

charged particles in the system and a term called the exchange-correlation energy 

that captures all many-body interactions.  

 

Density functional formalism is based on two theorems by Hohenberg and 

Kohn (1964), who considered the Hamiltonian 

 

                                 H T U V= + +  

               
2

2

1 2
( ),       

2

M M M

V i jexti i
ri i j ii

 
 
 

= −∇ + + ≠∑ ∑∑ ∑ r       (2.49) 

of a system of M interacting electrons moving in some fixed external potential extV . 

Here T is the kinetic energy, U is the electron-electron Coulomb repulsion and V 

is the interaction with the external potential, which includes the electrostatic 

interaction with the fixed nuclei. 

 

Firstly, Hohenberg and Kohn showed that the external potential is a unique 

functional of the electron density ( ),n r and hence the ground state Φ  and the energy 

functional 

                        [ ] ( ) ( )extH F n V n d< Φ Φ > = + ∫ r r r  

 

where                            [ ]        F n T U= < Φ + Φ >                  (2.50) 

are unique functionals of ( )n r .  

In addition, they separated out the classical Hartree contribution 
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1 2 ( ) ( )

[ ]  [ ]         
2

n n
F n d d G n

′
′= +

′−∫∫
r r

r r
r r

     (2.51) 

by defining yet another functional [ ]G n , which represents the kinetic energy plus 

the difference between the true interaction energy and that given by the Hartree 

interaction term. It follows that [ ]F n and [ ]G n  are universal functionals of the 

electron density, valid for any external potential and any number of electrons and 

that the freedom to specify the external potential may be used to generate different 

electron densities. 

 

Hohenberg and Kohn showed secondly that the energy functional (2.50) 

assumes its minimum value, the ground-state energy, for the correct ground state 

density. Hence, if the universal functional [ ]   F n T U= < Φ + Φ > were known, it 

would be relatively simple to use this variational principle to determine the 

ground-state energy and density for any specified external potential. Unfortunately, 

the functional is not known and the full complexity of the many-electron problem 

is associated with its determination. 

 

In this situation it is useful to note that the theorems described above apply 

equally well to the case of non-interacting electrons, i.e. to a system with the 

Hamiltonian 

                                      sH T V= +  

                                            ( )2
( )    

M M

i s i
i i

V= −∇ +∑ ∑ r      (2.52) 

The ground state sΦ  of this single-particle problem is simply a Slater 

determinant obtained by populating the lowest lying one-electron orbitals defined 

by the Schrödinger equation 

 

          
2

( ) ( ) ( )           s j j jV Eψ ψ −∇ + =
 

r r r              (2.53) 

So, the density is given by  
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2

( ) ( )                 j
j

n ψ=∑r r      (2.54) 

Hence, guided by the success of the one-electron picture, Kohn and Sham (1965) 

considered a system of non-interacting electrons together with the real system and 

proceeded to determine the external potential ( )sV r such that Eq. (2.54) is also the 

ground-state density of the real system.  

 

They wrote [ ]G n  in the form 

   [ ] [ ] [ ]        s xcG n T n E n= +      (2.55) 

where [ ]sT n  is the kinetic energy  

 
* 2  ( )( ) ( , )s s j j

j

T k dψ ψ< Φ Φ > = −∇∑∫ r r r                  (2.56) 

of the non-interacting electrons of density ( )n r and [ ]xcE n is the exchange 

correlation energy functional. In total we have now isolated two terms, the Hartree 

term in Eq. (2.51) and the kinetic energy in Eq. (2.55), which play a decisive role 

in the single-electron picture and which are presumably also the dominant terms in 

the interacting system. The remainder has been collected in [ ]E n , which therefore 

describes the difference between the true kinetic energy and that of the non-

interacting system, plus the difference between the true interaction energy and that 

included by the Hartree contribution. But the actual expressions for the many-body 

exchange and correlation interactions are unknown. The local density 

approximation (LDA) turned out to be computationally convenient and 

surprisingly accurate. In this approximation, the exchange correlation energy is 

taken from the known results of the many-electron interactions in an electron 

system of constant density. The LDA amounts to the following picture: at each 

point in a molecule or solid there exists a well defined electron density; it is 

assumed that an electron at such a point experiences the same many-body response 

by the surrounding electrons as if the density of these surrounding electrons had 

the same value throughout the entire space as at the point of the reference electron. 

The exchange-correlation energy of the total molecule or solid is then the integral 
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over the contributions from each volume element. The contributions are different 

from each volume element depending on the local electron density. The LDA is 

exact for a perfect metal (which has a constant electron density) and becomes less 

accurate for systems with varying electron density. Remarkably, the LDA is also 

quite well suited for systems with a high electron density such as transition metals. 

In this LDA approximation  

 

[ ] ( ( ))                      xc xcE n n r dε= ∫ r       (2.57) 

The exchange-correlation energy density ( )xc nε is obtained from a homogeneous 

electron gas of density n . 

 

Collecting together the above assumptions, the energy functional can be written in 

the form 

  

1 2 ( )
                         ( ) ( ( ))                                    

2
( ) (2.58)

s s

ext xc

H T

n
d V n n dε

< Φ Φ > = < Φ Φ > +

 ′ 
′ + + 

′−  
∫ ∫

r
r r r

r r
r r

 

and a minimalisation with respect to the density ( )n r now leads to the effective 

single-particle Schrödinger equation 

2 ( )
( ) ( ) ( ( ))  s ext xc

n
V d V V n

′
′= + +

′−∫
r

r r r r
r r

     (2.59) 

Here, the first term is the classical Hartree potential or electron-electron 

repulsion, the second term is the external potential which in most applications 

includes the Coulomb attraction from the nuclei and the final term is the exchange-

correlation potential. The latter is given by 

 

 
[ ]( )

( ) [ ( )]
xc

xc xc

d n n
V n

dn

ε
µ= ≡r r       (2.60) 

where xcµ is the exchange-correlation part of the chemical potential in a 

homogeneous electron gas of density ( )n r .  
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Now specify the external potential included by the last term of (2.49) to be 

the Coulomb attraction 
2

( )c
R

Z
V

R
= −

−
∑r

r
from the nuclei of charge Z and 

positioned at lattice vectors R and add to (2.49) the nuclear-nuclear repulsion 

 

21 2
   ,  

2
n

Z
V

′

′= ≠
′−

∑∑
R R

R R
R R

 

 

For the case of one atom per cell the number of electrons in the atomic 

sphere is Z. Hence, when cV  and nV  are included in the energy functional (2.58), 

one finds that the electrostatic interactions reduce to an interaction with the 

field
2Z

r
−  from the nucleus which is therefore the external potential ( )extV r . 

Furthermore, since this interaction is restricted to the sphere, it led to minimise the 

energy functional (per atom) 

 

     
1 2

  ( ) ( ( )) ( )   
2 H

Z
H T V n n ds s xc

rs
ε

 
 
 

< Φ Φ > = < Φ Φ > + − +∫ r r r r   (2.61) 

 

Here, the integrals extend over the atomic sphere of radius S and the Hartree 

potential ( )HV r is given by 
2 ( )

( )H

n
dV

s

′
′

′
= ∫

r
r

r - r
r . 

 

The minimalisation of Eq. (2.61) results in a one-electron Schrödinger 

equation of the form (2.53), valid inside each atomic sphere and with an effective 

one-electron potential given by 

     
2

( ) ( ) ( ( ))     xcH
Z

V V V ns
r

= − +r r r      (2.62)  

Matching the solutions of Eq. (2.53) and Eq. (2.62) from sphere to sphere finally 

gives the electronic energy-band structure of the crystal in question. 
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DFT calculated bands are found in many cases in agreement with 

experimental measured bands, for example by angle-resolved photoemission 

spectroscopy (ARPES). In particular, the band shape seems well reproduced by 

DFT. But also there are systematic errors of DFT bands with respect to the 

experiment. However DFT is not a theory to address excited state properties, such 

as the band plot of a solid that represents the excitation energies of electrons 

injected or removed from the system. What in literature, is quoted as a DFT band 

plot, is a representation of the DFT Kohn-Sham energies, which is the energy of a 

fictive non-interacting system, the Kohn-Sham system, which has no physical 

interpretation at all. The Kohn-Sham electronic structure must not be confused 

with the real, quasiparticle electronic structure of a system and there is no 

Koopman's theorem holding for Kohn-Sham energies, like on the other hand for 

Hartree-Fock energies that can be truly considered as an approximation for 

quasiparticle energies. Hence in principle DFT is not a band theory, not a theory 

suitable to calculate bands and band-plots. 

 

 

2.7 Muffin-tin Approximation: 

The muffin-tin approximation is a shape approximation of the potential 

field in an atomistic environment. It is most commonly employed in quantum 

mechanical simulations of electronic band structure in solids. The approximation 

was proposed by John C. Slater (Slater, 1937). Many modern electronic structure 

methods employ this approximation method, among them are the augmented plane 

wave (APW) method, the linear muffin-tin orbital method (LMTO) and various 

Green's function methods (Martin, 2004). In its simplest form, non-overlapping 

spheres are centred on the atomic positions. Within these regions, the screened 

potential experienced by an electron is approximated to be spherically symmetric 

about the given nucleus. In the remaining interstitial region, the potential is 

approximated as a constant. Continuity of the potential between the atom-centred 

spheres and interstitial region is enforced. In the interstitial region of constant 

potential, the single electron wave functions can be expanded in terms of plane 
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waves. In the atom-centred regions, the wave functions can be expanded in terms 

of spherical harmonics and the eigen functions of a radial Schrödinger equation. 

Such use of functions other than plane waves as basis functions is termed as the 

augmented plane-wave approach. It allows for an efficient representation of single-

particle wave functions in the vicinity of the atomic cores where they can vary 

rapidly (and where plane waves would be a poor choice on convergence grounds in 

the absence of a pseudo potential).  


