## CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tomato leaf curl Disease</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.1. Vital Etiology of Tomato leaf curl disease</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.1.2. Dissemination of begomovirus</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.1.3. Symptoms of Tomato leaf curl disease</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.1.4. Geminivirus genome organization</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.1.5. Geminivirus replication strategy</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.1.6. Cytological effects of Geminivirus replication</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.1.7. Diagnosis of Begomoviruses</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.2. Nanotechnology and Nanoparticles</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.3. Gold nanoparticles</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.3.1. Preparation of Gold nanoparticles</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.3.2. Properties of Gold nanoparticles</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.3.3. Diagnostic value of Gold nanoparticles</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>1.4. Electrochemistry</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.4.1. Electrochemical Metalloimmunoassay in the detection of biomolecules</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.5. Scope of the Study</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.6. Hypothesis</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.7. Aim and Objectives</td>
<td>26</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>27</td>
</tr>
<tr>
<td>2.1.</td>
<td>History of White-fly transmitted Geminiviruses</td>
<td>27</td>
</tr>
<tr>
<td>2.2.</td>
<td>Diseases caused by Whitefly transmitted Geminivirus in Tomato</td>
<td>30</td>
</tr>
<tr>
<td>2.3.</td>
<td>Begomoviruses infecting tomato in New World</td>
<td>30</td>
</tr>
<tr>
<td>2.4.</td>
<td>Begomoviruses infecting tomato in Old World</td>
<td>31</td>
</tr>
<tr>
<td>2.5.</td>
<td>Impact of Tomato leaf curl disease worldwide</td>
<td>32</td>
</tr>
<tr>
<td>2.6.</td>
<td>Impact of Tomato leaf curl disease in India.</td>
<td>33</td>
</tr>
<tr>
<td>2.7.</td>
<td>Detection Strategies for begomovirus</td>
<td>33</td>
</tr>
<tr>
<td>2.7.1.</td>
<td>Serological detection of begomovirus</td>
<td>33</td>
</tr>
</tbody>
</table>
2.7.2. Molecular detection of begomovirus
2.8. Gold nanoparticles as Biolabels
2.9. Gold nanoparticles as Biosensors
2.10. Scanometric Metalloimmunoassay technique and their diagnostic application
2.11. Application of electrochemical metalloimmunoassay in diagnostics

3. MATERIALS AND METHODS
3.1. Materials
3.1.1. Chemicals
3.1.2. Molecular Reagents
3.1.3. Laboratory wares

3.2. Methods
3.2.1. Molecular characterization of ToLCNDV
3.2.2. Polymerase Chain Reaction (PCR)
3.2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

3.3. Synthesis of Cationic Gold Nanoparticles
3.3.1. UV-spectrophotometry
3.3.2. HR-TEM
3.3.3. Particle Size analysis
3.3.4. Surface charge measurements
3.3.5. Fourier Transform Infrared Spectroscopy
3.3.6. X-ray diffraction
3.3.7. Salt-induced Flocculation of Cys-AuNPs
3.3.8. Calculation of Molar concentration and amount of gold atoms in Cys-AuNPs

3.4. Preparation of Anti-BGMV conjugated Gold Immunoprobe and its Characterization
3.4.1. UV-visible spectrophotometer
3.4.2. HR-TEM analysis
3.4.3. Particle size analysis
3.4.4. Surface charge measurements
3.4.5. Salt-induced Flocculation Studies
3.4.6. Calculation of anti-BGMV conjugated on the surface of gold nanoparticles using Bradford assay.
3.4.7. Colorimetric evaluation of antibody-conjugated gold nanoparticles against the
begomovirus-infected sample

3.5. Amine modification of PS wells and its characterization.
  3.5.1. WCA Measurements of Amine Modified PS Surface
  3.5.2. X-ray photoelectron spectroscopy
  3.5.3. Raman Confocal Microscopy analysis
  3.5.4. Characterization of amine modified PS surface using AuNPs staining method

3.6. Conjugation of Anti-BGMV antibody on the amine-modified PS wells and its characterization
  3.6.1. Immunoassay for the validation of anti-BGMV immobilized PS surfaces.
  3.6.2. Calculation of anti-BGMV antibody immobilized on the surface of gold nanoparticles using Bradford assay.
  3.6.3. Raman Confocal Microscopy analysis

3.7. Scanometric detection of Begomovirus Through immunoreaction
  3.7.1. Quantification of begomovirus in the positive control
  3.7.2. Scanometric detection method
  3.7.3. Preparation of begomovirus positive control standards and image analysis of silver enhanced PS wells
  3.7.4. Scanometric detection of Begomovirus in the field samples
  3.7.5. HR-TEM
  3.7.6. AFM Characterization of Gold Immunoprobe attached on PS surface with Silver Enhancement
  3.7.7. Raman confocal microscopy analysis

3.8. Electrochemical measurement using Anodic Stripping Voltammetry technique
  3.8.1. Anodic stripping voltammetry determination of silver (I) ions
  3.8.2. Measurement of anodic stripping peak current in the viral standards
  3.8.3. Measurement of anodic stripping peak current in the field samples
4. RESULTS

4.1. Molecular Characterization of ToLCNDV

4.1.1. Sample Collection

4.1.2. Isolation of Total Genomic DNA

4.1.3. Quantification of DNA by Nanodrop Method

4.1.4. Primer Designing

4.1.5. Amplification of Target using Polymerase Chain Reaction (PCR)

4.1.6. Sequencing of CP and Rep gene in ToLCNDV infection

4.1.7. Enzyme-Linked Immunosorbent Assay (ELISA)

4.2. Synthesis And Characterization Of Cationic Gold Nanoparticles

4.2.1. Synthesis of Cysteamine-capped gold nanoparticles (Cys-AuNPs)

4.2.2. UV-Visible Spectrophotometer

4.2.3. HR-TEM analysis

4.2.4. Particle Size analysis

4.2.5. Surface charge measurements

4.2.6. FTIR analysis

4.2.7. SAED Pattern Analysis

4.2.8. XRD analysis

4.2.9. Salt-Induced Flocculation Studies

4.2.10 Calculation of average number of gold atoms per nanoparticle

4.2.11 Determination of molar concentration of AuNP solution

4.3. Preparation of anti-BGMV conjugated gold immunoprobe and its characterization

4.3.1. UV-visible spectrophotometer

4.3.2. HR-TEM

4.3.3. Particle Size analysis

4.3.4. Surface charge analysis

4.3.5. SAED Pattern

4.3.6. Salt-induced flocculation studies

4.3.7. Calculation of antibody on AuNP – Bradford

4.3.8. Colorimetric Evaluation of antibody-conjugated AuNPs
4.4. Amine modification of PS plates, antibody conjugation on aminated surfaces and its characterization

4.4.1. Water contact angle measurement of amine modified PS plate

4.4.2. XPS characterization of amine modified and AuNPs stained PS plate

4.4.3. Raman11 analysis

4.4.4. AuNPs staining of amine modified PS plate

4.5. Covalent immobilization of anti-BGMV on amine modified PS plates

4.5.1. Immunoassay for the validation of antibody on the surface of PS plates

4.5.2. Bradford assay

4.5.3. Raman11 analysis

4.6. Scanometric metalloimmunoassay based detection of tomato leaf curl disease in tomato crops

4.6.1. Characterization of silver enhancement process using flat-bed scanner

4.6.2. HR-TEM

4.6.3. Atomic Force Microscopy

4.6.4. Raman Confocal Microscopy analysis

4.7. Electrochemical metalloimmunoassay based detection of Tomato leaf curl disease in tomato crops

5. DISCUSSION

5.1. Molecular characterization of ToLCNDV

5.1.1. Isolation of DNA and quantification of genomic DNA

5.1.2. Primer designing – an important prerequisite in the identification of species

5.1.3. Sensitivity of conventional techniques in the detection of begomoviruses

5.2. Preparation of Cysteamine-capped gold nanoparticles

5.3. Preparation of antibody-conjugated gold immunoprobe

5.3.1. Major Reactive groups in IgG

5.3.2. Colorimetric evaluation of antibody conjugated Cys-AuNPs
5.4. Modification of PS microtitre plates with amines and its characterization using WCA, XPS and RAMAN11 analysis
5.5. Analysis of amine modified surface through AuNP staining method and its characterisation USING UV-visible spectrophotometer, XPS and AFM analysis
5.6. Immobilization of antibody on the surface of amine modified PS plates
5.7. Scanometric immunoassay for the detection of begomovirus through silver enhancement of gold immunoprobes
5.8. Anodic stripping voltammetry analysis for the Evaluation of begomovirus in the tomato field Samples.

6. SUMMARY AND CONCLUSION
6.1. Summary
6.2. Conclusion

References