Several approaches have been proposed to provide access to data present in multiple databases. Prominent among these are the approaches taken in federated systems and multidatabase systems. These systems provide access to data in multiple databases in a unified way. However, in all these systems the user is not isolated from specifying the path expressions in the query. In our system, we propose a query language namely Structure Independent Query Language (SIQL), which has no reference to the structure of the databases. The user is provided with a GUI that assists him/her in constructing a query in SIQL by providing globally meaningful names representing the relations and attributes present in the component databases registered with the global system. The structure corresponding to these global names are arrived at, at run time, using these component databases. Since the same data item may be defined in several databases, alternate queries with different structures are generated by the system. We define a 'closeness' criterion, which imposes an ordering on these generated queries. The queries are generated and executed according to this ordering and the result is presented to the user. The user can choose relevant results, from the multiple results generated, for integration. The chosen results are integrated and presented to the user. A 'connectedness' criterion for intra-query result integration is proposed that defines the order in which the results should be integrated in order to be meaningful to the user. The ordering of results, for integration, based on this criterion leads to full disjunction if the set of results, for integration, form a connected γ-acyclic hypergraph. The system also allows the user to pose multiple interrelated queries, in addition to a single query, in SIQL. The inter-query result integration is also supported by the system. The results from each of the multiple interrelated queries in SIQL are integrated and presented to the user.