List of Figures

Fig.2.1. FPGA Design Method 20
Fig.2.2. Architectural Description of Spartan-II FPGA 31
Fig.2.3. Basic Spartan-II FPGA 33
Fig.3.1. Proposed 16-bit RISC Processor Architecture 38
Fig.3.2. Proposed 16-bit Processor's top-level view 39
Fig.3.3. Schematic of Proposed 16-bit RISC Processor 39
Fig.3.4. Memory architecture 47
Fig.3.5. Top view of memory block 48
Fig.3.6. Data path with Control unit 49
Fig.4.1. Top level view of Control Unit 53
Fig.4.2. Schematic view of Control Unit 54
Fig.4.3. Block structure of the Controller 55
Fig.4.4. State Diagram for Initial Step 57
Fig.4.5. State diagram for load word 58
Fig.4.6. State diagram for store word 59
Fig.4.7. State diagram for instruction store word indirect addressing 60
Fig.4.8. State diagram for load immediate 60
Fig.4.9. State diagram for arithmetic instructions 62
Fig.4.10. State diagram for jump instruction 62
Fig.4.11. State diagram for memory read 63
Fig.4.12. Schematic representation of Controller 65
Fig.4.13. Block Structure of the Instruction Register 66
Fig.4.14. Schematic representation of the Instruction Register 66
Fig.4.15. Block structure of the Program Counter 67
Fig.4.16. Schematic Block of Program Counter 67
Fig.4.17. Block structure of the Multiplexer 68
Fig.4.18. Schematic Block of Multiplexer 68
Fig. 5.1. Block structure of Data path of 16 bit RISC processor
Fig. 5.2. Schematic of Data path of 16 bit RISC processor
Fig. 5.3. Block structure of the Register file
Fig. 5.4. Schematic of the Register file
Fig. 5.5. Block structure of the ALU
Fig. 5.6. Block schematic of the ALU
Fig. 5.7. Block Diagram of 8X8 Booth Multiplier
Fig. 5.8. Restoring Division Circuit
Fig. 5.9. Restoring Division Algorithm
Fig. 5.10. Multiplication of two 2-digit decimal numbers by
 'Urdhva Tiryagbhyam' Sutra
Fig. 5.11. Multiplication of two 3-digit decimal numbers by
 'Urdhva Tiryagbhyam' Sutra
Fig. 5.12. Block Diagram of 8x8 Vedic Multiplier
Fig. 5.13. Architecture of 2x2 Vedic Multiplier Module
Fig. 5.14. Schematic representation of 2x2 Vedic Multiplier
Fig. 5.15. Architecture of 4x4 Vedic Multiplier
Fig. 5.16. Schematic Block of 4x4 Vedic Multiplier
Fig. 5.17. Proposed Architecture of 8x8 Vedic Multiplier
Fig. 5.18. Schematic Block of Proposed 8x8 Vedic Multiplier
Fig. 5.19. Architecture of 16x16 Vedic Multiplier Module
Fig. 5.20. Multiplication of two 1-digit decimal numbers (9 x 7) using
 'Nikhilam' Sutra
Fig. 5.21. Multiplication of two 2-digit decimal numbers (97 x 96)
 using 'Nikhilam' Sutra
Fig. 5.22. Block Diagram of 8x8 Vedic Multiplier using 'Nikhilam' Sutra
Fig. 5.23. Schematic of 8x8 Vedic Multiplier using 'Nikhilam' Sutra
Fig. 5.24. Block Diagram of 16x16 Vedic Multiplier using 'Nikhilam' Sutra
Fig. 5.25. Multiply-Accumulate Unit Architecture
Fig.5.26. Schematic of Multiply-Accumulate Unit
Fig.6.1. Synthesis Report of the proposed 16 bit RISC processor
Fig.6.2. Simulation waveform for Mov R0,M[100]
Fig.6.3. Simulation waveform for Mov M[19], R1
Fig.6.4. Simulation waveform for Mov M[R2], R1
Fig.6.5. Simulation waveform for Mov R1, #7
Fig.6.6. Simulation waveform for ADD R1, R2
Fig.6.7. Simulation waveform for SUBT R1, R2
Fig.6.8. Simulation waveform for MUL R1, R2
Fig.6.9. Simulation waveform for DIV R1, R2
Fig.6.10. Simulation waveform for jz R4, #5
Fig.6.11. Simulation waveform for readm (e.g. output M[19])
Fig.6.12. Simulation waveform for HALT
Fig.6.13. Synthesis Report Vedic Multiplier using Urdhva Tiryagbhyam Sutra
Fig.6.14. Simulation Result for 8x8 Vedic Multiplier using
 'Urdhva Tiryagbhyam' Sutra
Fig.6.15. Synthesis Report 8x8 Vedic Multiplier using Nikhilam Sutra
Fig.6.16. Simulation Result of 8x8 Vedic Multiplier using Nikhilam Sutra
Fig.6.17. Simulation Waveform of the proposed 16-bit RISC Processor
Fig.6.18. Synthesis Report of 16X16 Vedic Multiplier using
 Urdhva Tiryagbhyam Sutra
Fig.6.19. Synthesis Report of 16X16 Vedic Multiplier using 'Nikhilam' Sutra
Fig.6.20. Synthesis Report of 8x8 multiply accumulate unit.
Fig.6.21. Simulation result of multiply accumulate unit.