CONTENTS

List of Figures i
List of Tables iv
List of Abbreviations v

1. Introduction 1
 1.1 Processor Features 3
 1.2 Literature Survey 6
 1.2.1 Survey on Processor 6
 1.2.2 Survey on Data Path Design 9
 1.2.3 Survey on ALU 12
 1.2.4 Survey on Vedic Multiplier 15
 1.3 Motivation 17
 1.4 Objective 17
 1.5 Organization of the Thesis 18

2. Design Method for 16 bit RISC processor 19
 2.1 Design of a Digital hardware Unit 20
 2.2 CAD Tools 21
 2.3 Implementation Technology 28
 2.3.1 Programmable Gate Arrays 28
 2.3.2 Field Programmable Gate Arrays 29
 2.3.3 Spartan-II FPGA Family 30
 2.3.4 Complex Programmable Logic Devices 35

3. 16 bit RISC Processor Architecture 37
 3.1 Top Level Description and Guidelines 38
 3.2 Instruction set 40
 3.3 Instruction set Architecture 41
 3.4 Data Path Design 44
 3.5 Control Unit 46
 3.6 Memory 47
 3.7 Block structure of Data path with the Control Unit 48
4. Control Unit for 16 bit RISC processor

4.1 Instruction cycle

4.2 Top Level Description of Control Unit

4.3 Design of Individual modules of Control Unit

4.3.1 Controller

4.3.1.1 State Diagram

4.3.2 Instruction Register

4.3.3 Program Counter

4.3.4 Multiplexer

4.4 Conclusion

5. Data path and ALU for 16 bit RISC processor

5.1 Data path and ALU

5.1.1 Register File

5.1.2 ALU

5.2 Booth Multiplier

5.3 Restoring Division Algorithm

5.4 Vedic Multiplier using 'Urdhva Tirryagbhyam 'Sutra

5.4.1 Multiplication of two decimal numbers

5.4.2 Vedic Multiplication for Binary number

5.4.3 Block design of 8x8 Vedic Multiplier

5.4.4 Implementation of 2x2 Vedic Multiplier

5.4.5 Implementation of 4x4 Vedic Multiplier

5.4.6 Design Implementation of 8x8 Vedic Multiplier

5.4.7 Design Implementation of 16x16Vedic Multiplier

5.5 Vedic Multiplier using 'Nikhilam' Sutra

5.5.1 'Nikhilam' Sutra in Binary Number

5.5.2 Implementating the 8x8 Vedic Multiplier using

'Nikhilam' Sutra

5.5.3 Implementating the 16x16 Vedic Multiplier using

'Nikhilam' Sutra

5.6 The Multiply Accumulate Unit

5.7 Conclusion
6. Results and Discussions

6.1 Synthesis report of the proposed 16 bit RISC Processor
6.2 Simulation waveforms of Instructions
6.3 Synthesis and simulation result for 8x8 Vedic Multiplier
6.4 Results of prototype testing
 6.4.1 Simulation result of the proposed 16-bit processor and memory
6.5 Discussions

7. Conclusion

7.1 Conclusions
7.2 Future work

Appendix A: VHDL codes of 16 bit RISC processor and Vedic multiplier
Appendix B: VHDL codes of Vedic Multiplier
Appendix C: VHDL codes of MAC Unit

Bibliography