INDEX

Dedication
Declaration
Certificate
Acknowledgement
Curriculum vitae
Abstract

Chapters

1. Introduction
1.0 Introduction
1.1 Semiconductor Physics
1.1.1 Semiconductor materials
1.1.2 Basic principles of semiconductivity
1.1.2.1 Band structure of semiconductors
1.1.2.2 Doping of semiconductors
1.1.2.3 Charge transport in semiconductor
1.2 Sensors in general
1.3 Types of sensor
1.3.1 On the basis of external power requirement
1.3.1.1 Active sensor
1.3.1.2 Passive sensor
1.3.2 On the basis of applications
1.3.2.1 Physical sensor
1.3.2.2 Chemical sensor
1.4 Introductions to chemical sensors
1.5 Properties of chemical sensors
1.6 Electrochemical sensors
 1.6.1 Potentiometric and Amperometric sensors
 1.6.2 Conductometric sensors
1.7 Semiconducting metal oxide gas sensor: Historical background
1.8 Chemical and physical properties of metal oxide surfaces
 1.8.1 The atomistic model or surface molecule model
 1.8.2 The band model
1.9 Adsorption processes on solid surfaces (Physisorption/Chemisorption)
 1.9.1 Physisorption
 1.9.2 Chemisorption
 1.9.3 Ionosorption
1.10 Electronic structure of semiconductors
1.11 Working principle of semiconducting metal oxide gas sensors
1.12 Influence of surface additives on the sensing mechanism
 1.12.1 Spill-over or catalytic effect
 1.12.2 Fermi energy control
1.13 References

2. Literature Survey and scope of present research work

2.0 Introduction
2.1 Need of semiconductor gas sensors
2.2 Sensor characteristics
 2.2.1 Operating temperature
 2.2.2 Conductance
 2.2.3 Sensor response or Sensitivity
 2.2.4 Selectivity
2.2.5 Response time 52
2.2.6 Stability and long-term effects 52
2.2.7 Reversibility 53

2.3 Survey over the semiconducting metal oxide (SMO) gas sensors 53

2.4 Why bother about Indium oxide and Ni-Zn mixed ferrites? 59
2.4.1 Indium oxide (In₂O₃) 59
 2.4.1.1 Crystal structure of Indium oxide (In₂O₃) 59
 2.4.1.2 Prior work on gas sensing with In₂O₃ 61
2.4.2 Spinel ferrites 66
 2.4.2.1 Crystal structure of spinel ferrites 66
 2.4.2.2 Prior work on gas sensing with spinel ferrites 68

2.5 Need of hydrogen sulfide and ethanol gas sensors 70
2.6 Scope of present research work 71
2.7 References 72

3. Experimental 82

3.0 Introduction 83

3.1 Material preparation 84
 3.1.1 Pure and doped In₂O₃ 84
 3.1.2 Ni-Zn mixed ferrites 84
 3.1.3 Incorporation of noble metals 85

3.2 Gas sensor fabrication 85

3.3 Test system and gas sensing measurements 86

3.4 D.C. electrical conductivity measurements 88

3.5 Characterization techniques 89
 3.5.1 X-ray diffraction (XRD) 89
3.5.2 Transmission electron microscopy - Electron diffraction pattern (TEM - ED)

3.5.3 Fourier transform infrared spectroscopy (FT-IR)

3.6 References

4. Gas sensing applications of semiconducting materials based on pure and doped nanocrystalline In$_2$O$_3$

4.0 Introduction

4.1 Gas sensors based on pure and Co-doped In$_2$O$_3$

4.1.1 Experimental details

4.1.1.1 Preparation of pure and Co-doped In$_2$O$_3$

4.1.1.2 Material characterizations

4.1.2 Results and discussion

4.1.2.1 X-ray diffraction (XRD)

4.1.2.2 Transmission electron microscopy - Electron diffraction pattern (TEM-ED)

4.1.2.3 Fourier transform infrared spectroscopy (FT-IR)

4.1.2.4 D.C. electrical conductivity measurements

4.1.2.5 Gas sensing properties

4.1.2.6 Effect of noble metal additives

4.1.3 Conclusions

4.2 Gas sensors based on La-doped In$_2$O$_3$

4.2.1 Experimental details

4.2.1.1 Preparation of La doped In$_2$O$_3$ nanocrystalline powders

4.2.1.2 Material characterization

4.2.2 Results and discussion
4.2.2.1 X-ray diffraction (XRD) 140
4.2.2.2 Transmission electron microscopy – Electron diffraction pattern (TEM-ED) 143
4.2.2.3 Fourier transform infrared spectroscopy (FT-IR) 143
4.2.2.4 D.C. electrical conductivity measurements 148
4.2.2.5 Gas sensing characteristics 148
4.2.2.6 Effect of noble metal additives 157
4.2.2.7 Response and recovery 161
4.2.2.8 Stability of sensor elements based on In$_2$O$_3$ 161
4.2.3 Conclusions 164

4.3 Gas sensors based on Ni-doped In$_2$O$_3$ 165

4.3.1 Experimental details 166
 4.3.1.1 Preparation of Ni-doped In$_2$O$_3$ nanocrystalline powders 166
 4.3.1.2 Material characterizations 166

4.3.2 Results and discussion 166
 4.3.2.1 X-ray diffraction (XRD) 166
 4.3.2.2 Transmission electron microscopy – Electron diffraction pattern (TEM-ED) 167
 4.3.2.3 Fourier transform infrared spectroscopy (FT-IR) 170
 4.3.2.4 D.C. electrical conductivity measurements 172
 4.3.2.5 Gas sensing properties 172
 4.3.2.6 Effect of noble metal additives 177

4.3.3 Conclusions 182

4.4 References 183
5. Gas sensing applications of semiconducting materials based on nanocrystalline spinel $\text{Ni}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4$

5.0 Introduction
5.1 Gas sensors based on nanocrystalline spinel $\text{Ni}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4$
5.2 Material characterizations
5.3 Results and discussion
5.3.1 Structural characterizations
5.3.1.1 X-ray diffraction (XRD)
5.3.1.2 Transmission electron microscopy – Electron diffraction pattern (TEM-ED)
5.3.1.3 Fourier transform infrared spectroscopy (FT-IR)
5.3.2 D.C. electrical conductivity measurements
5.3.2.1 Temperature dependence
5.3.2.2 Compositional dependence
5.3.3 Gas sensing properties
5.3.3.1 Effect of Palladium (Pd)
5.3.3.2 Response and recovery
5.3.3.3 Stability
5.4 Conclusions
5.5 References

6. Future Scope
6.1 Future Scope
6.2 References

Abstracts of Published research papers