2.1.8 Intrinsic tryptophan fluorescence ... 28
2.1.9 Circular dichroism studies ... 30
2.2 Results .. 31
2.2.1 Light scatter .. 31
2.2.2 Interaction of bis-ANS with the lipase .. 32
2.2.3 Activity and intrinsic fluorescence of lipase in GdmCl 33
2.2.4 Circular dichroism of lipase ... 35
2.3 Discussion .. 36

Chapter 3 Generation of thermostable mutants of the Bacillus subtilis lipase by directed evolution
3.0 Introduction ... 39
3.1 Materials and Methods .. 41
3.1.1 Materials .. 41
3.1.2 Synthesis of chromogenic substrates for lipase assays 41
3.1.3 Preparation of substrate stocks .. 42
3.1.4 Assay with Triolein .. 42
3.1.5 Design of construct for random mutagenesis and screening 43
3.1.6 Random mutagenesis ... 43
3.1.7 Site-directed mutagenesis ... 44
3.1.8 Recombination .. 45
3.1.9 Screening .. 47
3.1.10 Protein purification ... 48
3.1.11 Half-lives of thermal inactivation ... 48
3.1.12 Enzyme Kinetics ... 48
3.1.13 Molecular modelling ... 48
3.2 Results and discussion .. 49

Chapter 4 pH-dependent thermostability and evidence for pH-dependent conformational changes of the Bacillus subtilis lipase
4.0 Introduction ... 57
4.1 Materials and Methods .. 60
4.1.1 Buffers and solutions ... 60
4.1.2 Measurement of residual activities .. 60
4.1.3 Fluorescence .. 61
4.1.4 Circular dichroism .. 61
4.2 Results and discussions .. 61

Chapter 5 Structural changes in Triton X-100 micelles in guanidinium chloride: Implications in lipase assays

5.0 Introduction .. 67
5.1 Materials and methods ... 70
5.1.1 Materials .. 70
5.1.2 Enzyme assays .. 71
5.1.3 CMC determination ... 72
5.1.4 Dynamic light scattering .. 72
5.1.5 Fluorescence studies ... 73
5.2 Results and discussions ... 74
5.2.1 Enzyme catalyzed hydrolysis of p-nitrophenyl esters in guanidinium chloride ... 74
5.2.2 Non-enzymatic hydrolysis of p-nitrophenyl esters in guanidinium chloride ... 76
5.2.3 Critical micelle concentration .. 78
5.2.4 Size ... 79
5.2.5 Fluorescence studies ... 81
5.3 Conclusion .. 84

Concluding remarks and future directions .. 89
References ... 92