CHAPTER-2

SURVEY OF PREVIOUS WORKS
In this chapter, we shall survey the various aspects of earlier investigations on the medicinal plants. Further, we shall review some of the research papers which are related to our work, such as papers related to the documentation of medicinal plants, unani medicinal plants, ethnobotanical studies, collection of folk and traditional knowledge, phytochemical studies, pharmacognostic studies, pharmacological studies and various other papers were cited and few of them are listed below in the following paragraphs.

Review of previous works on medicinal plants abroad/across the world.

A few significant contributions on medicinal plants undertaken by various researchers abroad are mentioned below.

Oyetayo et al., (2008) has studied the qualitative phytochemical screening of the herbal remedies shows the presence of saponin, tannins, alkaloids, anthraquinone and cardiac glycosides which suggest possible antimicrobial effect. However, the presence of microbial contaminants in the herbal remedies suggests that they may serve as source of infection to end users.

Berhanemeskel et al., (2009) has investigated the importance of documenting ethnopharmacological information on medicinal plants. The literature review was done by collecting relevant information from journal articles, workshop proceedings, books and electronic resources. The review sums up the importance of documenting the indigenous traditional knowledge on medicinal plants as being a vehicle for; (i) preserving cultural heritage, (ii) ethnopharmacological bases of drug research and (ii) preserving of biological diversity.

Muhammad Qasim et.al.,(2014) has documented the traditional uses of wild plants as medicine by the villagers along the coastal highway from Karachi to Uthal. Information was gathered from the local people using an integrated approach of floral collections, discussions with the elderly people and traditional medicinal practitioners using semi-structured questionnaire. This Ethno-medicinal survey indicated the medicinal importance of 54 plant species from 27 families in the targeted area. Majority of the plants (54%) from this coastal plant diversity were xerophytes followed by halophytes/xero-halophytes (40%) and
glycophytes (6%). The above-ground parts of plants *i.e.*, leaf, stem and fruit/seed as decoction are used most commonly to cure 23 ailments but root was also used in some cases.

Olusola *et al.*, (2015) has documented and reported a total of 412 individual medicinal plants in FUTA Wildlife Park these were distributed into 40 species within 19 families. Four transect was laid within the Park and six temporary sample plots of 30 m X 30 m were marked out using simple random sampling and detailed information of plants were recorded. Those recorded medicinal plants play very important roles in the life of the rural dwellers as well as the people that are closer to nature. Therefore, there is the need that proper attention is given for their conservation.

Review of previous works in India.

In India, there is tremendous scope for the study of literature on Medicinal plants and traditional knowledge because of the vast heritage and cultural diversity, Ethnobotany in India was initiated by the Economic Botany section of Botanical Survey of India since 1954.

Marcy *et al.*, (2005) have reported their work on Drug discovery from medicinal plants. Neuropharmacological properties of marine plants was studied by Suengmok cho *et al.*, (2005).

Dieter Treutter *et al.*, (2006) has reported the role of flavonoid in defence of plants against pathogens, herbivores and environmental stress are reviewed and their significant contribution to plant resistance is discussed. The inductivity of flavonoids is of particular interest for gathering evidences. Tools are mentioned, which may enhance flavonoid biosynthesis and accumulation. This includes metabolic engineering and also UV-light. UV-protection is one of their most significant functions, or even the most significant protective effect of flavonoids. The multi-functionality of these compounds, however, often complicates the interpretation of experimental results but finally, it supports their importance.

Soundararajan *et al.*, (2006) has reported the effect of *Aerva lanata* against Urolithiasis. The kidney stone disease is considered as one among the major diseases because reoccurrence is common and the drugs available shows the side effects so the people still
believes in herbal medicines, at the same time the researchers are trying to explore and discover the new ways and possibilities of drug discovery from plants.

Kar and Borthakur (2007) has reported 35 plant species used against Dysentry, Diarrhoea, and Cholera by the tribes of Kameng district of Arunachal Pradesh. This paper emphasizes the conservation of indigenous plant wealth through commercial cultivation and also for developing new and more efficacious remedies after detailed pharmacological and clinical investigations. Since last four decades considerable progress has been made in the field of ethnomedicine. A review of literature on ethnomedicine indicates that various workers have contributed from different parts of India reported by Mahajan et al., (2007).

Ravindra Mali and Anita Mehta (2008) conducted the pharmacological study on Butea monosperma seeds and their results shows the seeds are antidiabetic, anthelminthic, diuretic, and antinflammatory. A review on anthelminthic plants was published by Ravindra (2008) in the Niscairs online periodicals repository Journals, this study shows that the Butea monosperma Lam is strongly recommended anthelminthic plant.

Shukla and Chakravarty (2010) documented the traditional knowledge of medicinal plants that are in use by the Raj-Gond tribes residing in Korba district of Chhattisgarh. Manjamalai and Satyajith (2010) has studied the analysis of phytochemical constituents and anti microbial activity of some medicinal plants in Tamil nadu, India. Phytochemical screening and in-vitro antimicrobial activity of Butea monosperma (L) bark ethanolic and aqueous extract was investigated by Pattari Lohita and Ravi kiran (2010).

Londonkar et al., (2010) has investigated the anti microbial activity of leaves of the Butea monosperma against gram+ve bacteria like staphylococcus aureus, Gram-ve bacteria like Pseudomonas aeruginosa, Klebsiella pneumonia, Escherchia coli, Proteus mirabilis, Proteus vulgaris and fungi like Aspergillus niger, Aspergillus flavus, this study also shows that Butea frondosa has broad spectrum antibacterial and anti fungal activity and a potential source of new classes of antibiotics that could be useful for infectious disease chemotherapy and control.

The present day medical management of all the diseases and disorders are becoming too costly or not without side effects hence, the search for the curative drugs from natural sources has assumed a greater importance because they are effective with fewer or no
side effects and are also inexpensive. Indian plants are constantly being evaluated for possible results one such plant is *Musa paradisica* Linn belonging to family Musaceae which is used to cure some of the intestinal disorder, constipation diarrhea, arthritis, gout and anemia etc, reported by Jha U et al., (2011).

The large population of humans still is suffering from liver disorders, even though people are using the raw herbal products, in some cases the raw drugs are found to be ineffective but there various solvent extracts are found very effective. Sathish et al., (2011) has reported the Hepato protective and antipyretic activities of methanolic extract of *Butea monosperma* Lam stem bark in wister rats. The investigation on hepatoprotective and antipyretic activities of methanolic extract of *Butea monosperma* Lam stem Bark in wister rats was carried out by Sathish and Sravan (2011).

A review on pharmacognosy and pharmacology of *Nigella sativa* was reported by Saharajsekhar et al., (2011). This article is an effort to describe the pharmacognosy and pharmacological character of *Nigella sativa* seeds. The investigation on Hepatoprotective and Antipyretic activities of methanolic extract of *Butea monosperma* Lam. stem Bark in wister Rats was carried out by R. Sathish and P. Sravan kumar (2011).

The preventive and curative effects of *Achyranthes aspera* Linn. Extract in experimentally induced nephrolithiasis in wistar rats was performed by Anshu aggarwal et al., (2012). Firdaus rana and Mazumder avijit (2012) has studied the Review on *Butea monosperma*. Piyush Gupta and N.S.Chauhan has carried out the work on Phytochemical and Pharmacological review on *Butea monosperma*-Palash (2012).

The parameters required for quality evaluation of herbal drugs includes Authentification of raw material, detection of nature of adulterants, organoleptic evaluation, extractive values, pesticides, heavy metals, contaminations estimations, shelf life which are to be carried out according to WHO guidelines for herbal drugs, determination of quality and purity of herbal drugs (N.M.A. Rasheed, 2012).

Anil Kumar et al., (2012) has described *Butea monosperma* Lam as a multipurpose medicinal tree and traditional uses of its flowers as antioxidant, memory stimulant, antileprotic, anticonvulsant, anti-inflammatory, antiulcer its seeds are in
inflammation bleeding piles, urinary stones, skin and eye diseases, abdominal troubles intestinal worms and tumour its gum is used in stomatitis leucorrhoea, septic sore throat, excessive perspiration and diarrhoea. Piyush Gupta et al., (2012) has explored the traditional use of *Butea monosperma* Lam. as a antimicrobial, wound healing, antifungal, antidiarrhoeal, hypoglycemic, hepatoprotective, antioxidant, anti-helminthic, anti-convulsive, anti-stress, anti-diabetic, anti-inflammatory plant and also used for the treatment of goiter and antidote for snake bite.

Faiyaz Ahmed and Siddaraju (2012) evaluated the antidiabetic effect of aqueous extracts of *Butea monosperma* leaves and bark in streptozotocin induced severely diabetic rays, the leaves and bark extracts reduced blood glucose to an extent of 28% and 11% respectively. Ravindra kumar et al., has conducted the experiment on The Pharmacological evaluation of ethanolic extract of *Kigelia pinnata*. Apart from the higher plants few algal members also posses medicinal properties, the three seaweeds were screened for their antibacterial activity, the brown algae *S. wightii A. Spicefera, C. Adharens* shows good results against the *Staphylococcus aureus, vibrio cholerae, Shigella dysentriae, Salmonella paratyphii, Klebsiella pneumoniae* etc, reported by seenivasan et al.,(2012).

Anshu Aggarwal and Surinder singla (2012) has studied the preventive and curative effects of *Achyranths aspera* extract in experimentally induced nephrolithiasis. Lachure et al., (2012) has tried for the exploration of some Medicinal Plants used by tribals from Digras region of District-Yavatmal, Maharashtra, India. *Achyranthes aspera* for toothache, astringent, *Dalbergia sissoo* as Anti-helmentic and Emetic, *Euphorbia hirta* for Asthma, *Cissus quadrangularis* for Bone fracture *Annona Squamosa* for the treatment of dysentery *Abras precatorius* as uterine stimulant, *Boerhaavia diffusa* as toxic in sexual inadequancy, *Tribulus terrestris* as toxic in sexual inadequancy etc. The preventive and curative effects of *Achyranthes aspera* Linn. Extract in experimentally induced nephrolithiasis in wistar rats was performed by Anshu aggarwal et al., (2012). Firdaus rana and Mazumder avijit (2012) has studied the Review on *Butea monosperma*. Piyush Gupta and N.S.Chauhan has carried out the work on Phytochemical and Pharmacological review on *Butea monosperma*-Palash (2012).

In recent years there has been rapid increase in the standardization of selected medicinal plant of potential therapeutic significance. Despite the modern techniques, identification of plant drug by pharmacognostic study is more reliable. *Minusops elengi*
belongs to family Sapotaceae, commonly known as Spanish cherry is one such tree native to the Western Ghat region of the peninsular India. This study was investigated by Prasad et al., (2012).

Herbs used by traditional healers for malaria management were documented in the Tumkur district of Karnataka, India. In total, 31 species of plants from 20 families are used. Thirty percent of the herbal remedies containing species were from three plant families: Fabaceae, Piperaceae, and Zingiberaceae. Leaves were the most commonly used plant part (29%). Eight plant species used in the study area were documented for the first time for their use in the treatment of malaria. Prakash and Unnikrishnan (2013).

Patel Hitesh et al., (2013) has carried out the ethnobotanical studies and documented about 35 plant species belonging to 24 families from Poshina forest range and R.D.F. (Rehabilitation of Degraded Forest range) sabarkanta district of Gujarat with their botanical names, local names, family and their ethnobotanical uses. The species were arranged family vise according to the flora of Gujarat state.

Misra and Lokho (2013) has carried out the Qualitative phytochemical analysis of root tubers of six species of Dioscorea found in Meghalaya. The test confirms the presence of various phytochemicals like flavonoids, saponins, steroids, cardiac glycosides and terpenoids in two aqueous extracts of methanol and ethyl acetate. The results suggest that the methanolic extract shows the presence of maximum phytochemical compounds than ethyl acetate extract during screening. Cholesterol and alkaloid was not detected in present investigation.

Meghendra Sharma and Ashwani Kumar (2013) has reported that the Pharmacognosy is mainly concerned with naturally occurring substances having a medicinal action. It also includes the study of other material used in pharmacy such as flavoring and suspending agents, disintegrants, filtering and support media and so on. It is closely related to both botany and plant chemistry. The investigations studies were conducted on some selected plants of semi-arid regions.

Liyatur Rosyidah et al., (2013) has claimed in his research paper that the consumption of porang tuber powder (Amorphophallus Muelleri) induced the formation of kidney stone, apart from this, one of the substance called Ethylene glycol used as antifreeze solutions and coolants and also incorporated into the solvents, industrial lumectants, brake
fluid, paints, lacquers, glass cleaners cosmetics injestions of the chemical accidentally into our body can induce the formation of kidney stone. Ethnobotanical Plants Used by the Tribes of R.D.F. Poshina Forest Range of Sabarkantha District, North Gujarat, India was studied by Patel Hitesh et al., (2013). In his work he has tried to explore the importance of Sacred grooves in preserving the Biodiversity.

Suman Kumar and Venkateshwar (2013) has studied the Phytochemical screening of some compounds from plant leaf extracts of *Holopelteleia integrifolia* (Planch,) and *Celestrus emarginata* (Grah,) used by Gondo tribes at Adilabad district, Andhra Pradesh, India. The Phytochemical analysis and free radical scavenging potential of Herbal and Medicinal plant extracts was studied by Anjali soni and Sheetal sosa(2013), whereas the study conducted by Narasimharao and Bhogireddy (2013) shows the seeds of *Nigella sativa* are antihelminthic, antidiabetic, diuretic, and antinflamatory in nature. Pharmacognostial Characterization of Some Selected Medicinal Plants of Semi-Arid Regions was carried out by Meghendra Sharma1 and Ashwani Kumar (2013). Pharmacognostical Characterization of Ocimum Spp was reported by Shashi agarwal and Vijay kumar (2013). Amrita pal singh saroya has written a book on Herbalism, Phytochemistry and ethnopharmacology on some selected medicinal plants.

Surjowardojo et al., (2014) has conducted the studies on Quantitative and Qualitative phytochemicals analysis of *Muntingia calabura*. (Geetha and N Geetha (2014) has studied the Phytochemical screening, Quantitative analysis of Primary and Secondary metabolites of Cymbopogan citrates leaves from kodaikanal hills, Tamilnadu. Studies on qualitative, quantitative, phytochemical analysis and screening of in vitro biological activities of *Leucas indica* (L) VAR. Nagalapuramiana was performed by Kamala Pranoothi and Narendra (2014). Jamuna senguttuvan et al., (2014) has studied the Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, *Hypochaeris radicata* L. for in vitro antioxidant activities. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation was studied by Samidha Kamtekar (2014). Neelam Kumar et al., (2014) has studied the Unani Medicinal Plants Used in Gynocological Disorders from Tehsil Joginder Nagar, District Mandi, H.P., India. This paper shows the systematic study of Unani medicinal plants and graphical representation of utilised plants according to number of species per family.
Pratima et al., (2015) has studied the phytodiversity in the Gavisiddalingeshwara sacred grove Chintanpalli of Yadgir District, Karnataka, India, and listed the profile of 200 medicinal plants which are commonly used in all the traditional medicinal systems of India. Singh Upasana et al., (2015) conducted the ethnobotanical survey in different areas of Raigarh district of Chattisgarh, India. The paper reports the documentation as well as ethnobotanical use of 89 plant species. Ethnobotanical Study of Traditional Medicinal Plants Used by Indigenous People in North Kerala was studied by Tojo Jose, Sebastian A and V.T Antony (2015).

The Phytochemical analysis of Nigella sativa and its effects on reproductive system was reported by Haseena and Manjunath (2015). Comparative studies on Polyphenolic composition, Antioxidantand Diuretic Effects of Nigella sativa L. (Black cumin) and Nigella damascene L. (Lady- in- a- Mist) seeds was studied by Claudia-Crina Tema and Neli-Kinga Olah (2015). Physicochemical and Quantitative Phytochemical Analysis of some Medicinal Plants in and around Gadhinglaj was performed by Kumbhar and Godghate (2015). Phytochemical and analytical evaluation of Palash (Butea monosperma Roxb.) flower was investigated by Gavit Monish Pundlik (2015). A R Florence and Sukumaran (2015) has performed the Phytochemical screening of selected medicinal plants of the family Lythracea (2015).

Nature has provided a good source of medicinal plants for thousands of years and an impressive number of modern drugs have been isolated from those medicinal plants. Various medicinal plants have been used for years in daily life to treat diseases all over the world. Likewise as per the survey of the literature the Dalbergia sissoo is widely growing plant at different parts of country, Traditionally it is used to cure many diseases. The genus consists of 300 species among which 25 species are found to in India reported by Mamta Bhattacharya et al., (2014).

Padamanabhan et al., (2014). Has reported that Albizia lebbeck (L) Benth is an important medicinal tree found in India, he has evaluated the phytochemical constituents and antioxidant activity of leaf and bark extracts of Albizia lebbeck. Antioxidant activity was carried out using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and Nitric oxide. The phytochemical screening of leaves and barks of Albizia lebbeck revealed the presence of phenols, steroids, tannins, saponins and alkaloids in the hydroalcohol extract. The percentage
yield of hydroalcohol extract of the leaf of *Albizzia lebbeck* was higher (13.55%) than that of the bark. Also quantitative analysis showed that percentage of phenols was higher (17.47%) in the leaf extract. The results of DPPH scavenging activity for leaf hydroalcohol showed (14.87%) and bark hydroalcohol showed (12.95%). When compared to standard the leaf hydroalcohol showed better activity (14.84%). It indicates that the plant has the potency of scavenging free radicals and it may provide leads in the ongoing search for natural antioxidants from various medicinal plants to be used in treating diseases related to free radical reactions.

The phytochemical screening and quantification of primary and secondary metabolites like chlorophyll, carbohydrates, protein, lipids, phenol, tannin and flavonoids from *Cymbopogon citratus* (DC) Stapf. Leaves was performed by T.S.Geetha and N.Geetha,(2014).

Aguoru *et al.,* (2014) has carried out the Phytochemical studies on the leaf, stem and root of *Cissus populnea* used by the Idoma people of North Central Nigeria as soup seasoner to determine the presence and abundance of various bioactive compounds. The various plant parts were collected from five(5) different locations in Ai-kwu Otukpa in Ogbadibo Local Government Area of Benue State, Nigeria. The results shows high saponins content in the leaf (44.46%), followed by anthraquinone (39.63%). The stem and the root also contain large amount of alkaloids, saponins, flavonoids and tannins. However, the alkaloids content in the stem was highest, with 51.84%. It was followed by flavonoids(17.44%), saponins(15.42%), and tannins(13.29%). Similarly there was high amount of flavonoids(43.48%), alkaloids(28.95%), tannins(12.29%) and saponins (11.32%) in the root. However, Chi-square,Wallis Test and comparison of two means (T-test) revealed no significant difference in the mean values of the phytochemicals across the plant parts at 95% confidence limit.

Medicinal herbs used in modern medicine are occupying a very significant place as raw materials for important drugs. India officially recognizes over 3000 plants for their medicinal value. It is generally estimated that over 6000 plants in India are used in traditional, folk and herbal medicine. Traditionally Ixora is found to be useful for many ailments like hepatic disorder, cancer, microbial infection, antioxidant, pain, inflammation, etc. reported by Sonitha Dontha (2014).
In one of the investigation carried out by Akhila and Vijayalakshmi (2015). Whole plant parts, fruits, roots, bark, peel, seeds and pulp of *Carica papaya* are known to have medicinal properties. It has been used for treatment of numerous diseases like warts, corns, sinuses, eczema, cutaneous tubercles, blood pressure, dyspepsia, constipation, amenorrhea, expel thread worms and stimulate reproductive organs. Pilot studies done in dengue patients with leaf juice revealed that the effect of leaf juice on elevating white blood cells, platelet count and recovery without hospital admission.

Rakesh Samar, P. N. Shrivastava and Manju Jain(2015) has focused their study on identifying medicinal plants, disease treated, part of the plant used, methods of preparation, route of administration, ingredients added etc. The data was collected using interview and questionnaires by selecting 16 healers using purposive sampling method. A total of 32 medicinal plant species were collected and identified from the study area for treating various human ailments. The paper enumerates these medicinal plant species belonging to 26 genera and 18 families.

Upasana et al., (2015) has conducted their study in different area of Raigarh district of CG. (India). The ethnobotanical use of 89 plant species are described in which different parts of plants are used for different purposes by people for example medicine, food, fodder, furniture, fiber, cosmetics etc. This study highlights that local people knowledge and culture can play important role in resource management and to focus on the diversity of ethnobotanical plants for future use and provide the framework to aware the people how to use plants to solve different type of problem.

Sumayya and Pratima (2015) has studied the effect of aqueous extracts of dried seeds powder of *Butea monosperma* plant and *Nigella sativa* plant against Ethylene glycol induced renal calculi in albino wistar rats. A renal calculus was induced in rats by ingesting 0.75% Ethylene glycol in drinking water for one month. Ethylene glycol treated rats showed significant high increase in the level of promoters such as calcium, phosphorous, Potassium, BUN and low concentration of inhibitors such as magnesium contents in the urine samples. Oral administration of *Butea monosperma* aqueous suspension to one group of Ethylene glycol induced urolithic rats and *Nigella sativa* aqueous suspension to another group of Ethylene glycol induced urolithiatic rats (2g/kg body wt/day upto one month) had reduced the concentration of calcium, BUN, Creatinine, Phosphorous, and diminished the crystals
deposition in the kidneys. The result of the present study confirmed that *Butea monosperma* aqueous extracts and *Nigella sativa* aqueous extracts can be used as curative agent for urolithiasis.

Shivakumar and Rajender (2015) has reported the total of 24 ethnomedicinal plants from 23 genus and 24 species occupied 18 families were recorded in his studies. This is a first report from the Renlagadda Thanda of Kodangal mandal. The study area having wealthy in medicinal plants flora and tribal communities with latest usages. Documentation of traditional knowledge on medicinal plants from the village or thanda level is the elementary and necessary samples for novel medication.

All the Traditional systems of medicine, Ayurveda, Siddha and Unani describe applications of drugs of plant, mineral and animal origin to treat and heal wounds. Herbal drugs induce healing and regeneration of lost tissue by number of mechanisms. Due to their traditional applicability, affordability and safety plants gained a reputed position in the world of wound management and repair but scientific evidence for their wound healing potentials are very few. The attempts are in progress to highlight various Indian ethno-medicinal plants which are to be scientifically proved for the treatment of wounds investigated by Sapnasaini and Anjudhiman (2016).

Review of previous works in Hyderabad Karnataka region.

With the objective to document the unani traditional medicinal plants knowledge used in treating various diseases across the globe, later in India as well as in Hyderabad Karnataka region. A few significant contributions on medicinal plants undertaken by various researchers are mentioned below

The Hyderabad Karnataka region is most backward region with a rich tradition of folk medicinal treatment, which is rooted in the masses of this region since time immemorial and such kind of tradition, is still practiced in different strata of groups of the region. According to the study male practitioners are dominant and the majority of folk medicine practitioners are illiterates. Most of the practitioners practice medicinal treatment as part-time basis and it was found that almost practitioners are in aged group with well knowledge experience in their folk medicine practice. Practitioners provide treatment for all kinds of
illness and treatment it is more or less social service to the society in this region. Dr. Dundappa (2016).

Review of previous works on Unani medicinal system

Zainab (2013) has reported that *Nigella sativa* seeds have a potential medicinal value and are relatively safe to consume. Black seeds are used as a carminative, aromatic, stimulant, diuretic, anthelmintic, galactagogue and diaphoretic, they are used as a condiment in curries. A tincture prepared from the seeds is useful in indigestion, loss of appetite, diarrhoea, dropsy, amenorrhoea, dysmenorrhoea and in the treatment of worms and skin eruptions. Externally the oil is used as an antiseptic, to arrest vomiting, seeds are roasted and given

The unani, system of medicine, which originated in Greece during 400 BC, came to India through the Arab physicians who had accompanied Mughal invaders. The Siddha system, which is known to have originated from the Hindu God Siva, passed through his wife Parvathi and finally to his disciplines was in use mainly in Dravidian civilization (Jain, 1994)

Neelam Kumar (2014) has prepared a checklist after comparing with the existing literature of unani system of medicine and especially with the list of medicinal plant used in unani system of medicine for abortifacient, emmenagogues, stimulant and depressant action on uterine muscle given in Hamdard Pharmacopoeia of Eastern Medicine International Journal of Scientific and Research Publications, unani medicinal plants used in gynecological disorders from tehsil joginder nagar, district mandi, H.P., India

Neelam Kumar (2014) has recorded 65 plant species of 63 genus and 47 families belonging to two distinct taxonomic groups *i.e.*, angiosperms and gymnosperms. All plants collected during study period have been used to cure various disorders and are provided along with their botanical name, family name, local name, unani name. A checklist has been prepared after comparing with the existing literature of Unani System of Medicine and especially with the list of medicinal plant used in unani system of medicine for various disorders.
Murugeswaran, (2014) has conducted the survey to study the diversity of medicinal plants in the Western Ghats region of Coimbatore District, Tamil Nadu, India. The study mainly focused on medicinal plants which are used in the Unani system of Medicine. The present paper deals with the 60 medicinal plants of 54 genera belonging to 35 families. Based on the distribution status of the unani medicinal plants it is categorized as common or rare and endangered. The plants falls under the rare, endangered category are recommended for germplasm collection and also initiated to take up cultivation and propagation activities through the modern Agronomical techniques.

Karim and Kalam (2015) has studied the concept of kidney disease in unani literature. Kidney is a vital organ of human body which perform very important function of formation of urine. Unani system of medicine has illustrated its anatomy, physiology and diseases occurred due to its different abnormalities. Kidney has the four common powers viz; Quwwate Jazibah (absorptive power), Quwwate Hazimah (digestive power), Quwwate Masikah (retentive power) and Quwwate Dafiah (power of excretion) and one special power Quwwate Momaiyazah (power of discrimination) which is responsible for the normal functioning of the kidney. Understanding of unani physiological aspect and disease condition of kidney will pave the path of its prevention and cure.