Chapter 5

Power domination in some classes of graphs

The power domination number of various classes of graphs has been determined using a two-step process: Finding an upper bound and a lower bound. The upper bound is usually obtained by providing a pattern to construct a set, together with a proof.

Some results of this chapter are included in the following papers.
that constructed set is a PDS. The lower bound is usually found by exploiting the structural properties of the particular class of graphs. Not many exact values of $\gamma_{P,k}$ for special graph classes are known. In this chapter, we determine the power domination number of 3-regular Knödel graphs and provide an upper bound for $\gamma_{P}(W_{r+1,2^{r+1}+1}, r \geq 3$. We compute $\gamma_{P,k}$ and $\text{rad}_{P,k}$ of H^{2}_{p}. We also study $\gamma_{P,k}$ of $WKP_{(C,L)}$ and this is the first network class with the pyramid structure for which the k-power domination number is studied.

5.1 Knödel graphs

In this section, we study the power domination number of Knödel graphs.

It is clear from Definition 1.2.20 that $W_{\Delta,2\nu}$ is bipartite. Also, $W_{\Delta,2\nu}$ is connected if and only if $\Delta \geq 2$, since in that case it suffices to alternate edges in dimension 0 and 1 to get a Hamiltonian cycle.

From Observation 1.4.9 (b), we get that $\gamma_{P,k}(W_{\Delta,2\nu}) = 1$ for
\[\Delta \geq 2 \text{ and } k \geq \Delta - 1. \] Therefore it is interesting to study
k-power domination number of \(W_{\Delta,2\nu} \) for \(k \leq \Delta - 2 \).

For \(\Delta = 1, W_{1,2\nu} \) consists of \(\nu \) disjoint copies of \(K_2 \) and
therefore \(\gamma_P(W_{1,2\nu}) = \nu \). For \(\nu \in \mathbb{N}_2 \) and \(\Delta = 2, W_{2,2\nu} \) is a cycle
on \(2\nu \) vertices and clearly \(\gamma_P(W_{2,2\nu}) = 1 \). We have the following
theorem for the case \(\Delta = 3 \), if \(\nu \in \mathbb{N}_4 \).

Theorem 5.1.1. For \(\nu \in \mathbb{N}_4 \), \(\gamma_P(W_{3,2\nu}) = 2 \).

Proof. We prove that the set \(S = \{(1,0),(2,2)\} \) is a PDS of
\(W_{3,2\nu} \). Then the set of dominated vertices is given by \(\mathcal{P}_1^0(S) = \{(i,j): i \in [2], j \in [3]_0 \} \cup \{(1, \nu - 1), (2,3)\} \). For \(\nu = 4 \), \(S \) is a
dominating set of \(W_{3,8} \) and for \(\nu = 5, 6 \), we can easily observe
that all vertices of \(W_{3,2\nu} \) get monitored after the first propagation
step and therefore \(S \) is a PDS. Let \(\nu \in \mathbb{N}_7 \). Depending on
whether \(\nu \) is odd or even, we write \(\nu = 2m - 1 \) or \(\nu = 2m, \)
\(m \in \mathbb{N}_4 \), respectively. Then for \(i \in [m-3], \)

\[
\mathcal{P}_1^i(S) = \left(\{(1,j): j \in [i+3]_0 \} \cup \{(1, \nu - j): j \in [i+2]\} \right)
\cup \left(\{(2,j): j \in [i+5]_0 \} \cup \{(2, \nu - j): j \in [i]\} \right).
\]

We get that \(\mathcal{P}_1^{m-3}(S) = V(W_{3,2\nu}) \), if \(\nu \) is odd, and \(\mathcal{P}_1^{m-2}(S) = \)
Chapter 5. Power domination in some classes of graphs

\[P_1^{m-3}(S) \cup \{(1, m), (2, m + 2)\} = V(W_{3,2\nu}), \text{ if } \nu \text{ is even.} \]

Hence, in both cases we see that every vertex of \(W_{3,2\nu} \) gets monitored after step \(\left\lfloor \frac{\nu}{2} \right\rfloor - 2 \) and therefore \(S \) is a PDS of \(W_{3,2\nu} \).

To prove that \(\gamma_P(W_{3,2\nu}) \geq 2 \), let us assume that \(\{v\} \) is a PDS of \(W_{3,2\nu} \). Then, since \(W_{3,2\nu} \) is bipartite, after the domination step, each of the neighbours of \(v \) has exactly two unmonitored neighbours which prevents the further propagation. Hence \(\gamma_P(W_{3,2\nu}) = 2 \).

We now focus on the family of Knödel graphs \(W_{r+1,2r+1} \). In the next theorem, we prove that the power domination number of \(W_{r+1,2r+1} \) is at most \(2r^2 - 2 \). For that, we construct a PDS of cardinality \(2r^2 - 2 \) in \(W_{r+1,2r+1} \). One can easily check that \(S' = \{(1, 1), (2, 6)\} \) is a PDS of \(W_{4,16} \). It is proved in [30] that \(W_{r+1,2r+1} \) can be constructed by taking two copies of \(W_{r,2r} \) and linking the vertices of each copy by a certain perfect matching. Therefore, in order to construct a PDS for \(W_{5,32} \), we take two copies of the set \(S' \), each from a copy of \(W_{4,16} \) that lies in \(W_{5,32} \) and then prove that the new set is a PDS of \(W_{5,32} \). We now extend the same idea to construct a PDS of \(W_{r+1,2r+1} \) for larger values of \(r \). In the proof of the following theorem, we first
produce a set S and then give the set of vertices that are dominated given by $P_0(S)$. After that we give the elements in the set $P_1(S)$ and $P_2(S)$, the sets of vertices that get monitored at the first and second propagation step, respectively. We obtain that the entire graph get monitored in two propagation steps and thus S is a PDS of $W_{r+1,2r+1}$.

Theorem 5.1.2. For $r \in \mathbb{N}_3$, $\gamma_p(W_{r+1,2r+1}) \leq 2^{r-2}$.

Proof. Let $\nu = 2^r$ and $S = \{(1, 2^{r-3} + j), (2, 7 \cdot 2^{r-3} - 1 + j) : j \in [2^{r-3}]_0\}$. Then

$$P_0^0(S) = S \cup \{(1, 7 \cdot 2^{r-3} + j - 2^\ell \mod \nu), (2, 2^{r-3} + j + 2^\ell - 1 \mod \nu) : j \in [2^{r-3}]_0, \ell = r - 3, r - 2, r - 1, r\}.$$

For $r = 3$, the vertex $(1, 2j + 1)$ monitors $(2, 2j + 1)$ for every $j \in [3]$ and the vertex $(2, 2j)$ monitors $(1, 2j)$ for every $j \in [3]_0$.

Thus we get $P_1^1(S) = V(W_{4,16})$. Assume now that $r \in \mathbb{N}_4$. Then, for each j and ℓ, where $j \in [2^{r-4}]_0$, $\ell = r - 2, r - 1, r$, the vertices in the set $\{(1, 7 \cdot 2^{r-3} + j - 2^\ell \mod \nu)\}$ monitor the vertices in the set $\{(2, 8 \cdot 2^{r-3} + j - 2^\ell - 1 \mod \nu)\}$ by propagation. Also,
for each \(j \) and \(\ell \), where \(2^{r-4} \leq j \leq 2^{r-3} - 1 \), \(\ell = r - 2, r - 1, r \), the vertices in the set \(\{(2, 2^{r-3} + j + 2^\ell - 1 \mod \nu)\} \) monitor the vertices in the set \(\{(1, j + 2^\ell \mod \nu)\} \) by propagation.

Hence the set of vertices monitored at step 1 is given by

\[
P_1^1(S) = \{(1, j + 2^\ell \mod \nu) : 2^{r-4} \leq j \leq 2^{r-3} - 1, \ell = r - 2, r - 1, r\}
\]

\[
\cup \{(2, 8 \cdot 2^{r-3} + j - 2^\ell - 1 \mod \nu) : j \in [2^{r-4}]_0, \ell = r - 2, r - 1, r\}
\]

\[
\cup P_0^1(S).
\]

Again following the propagation rule, for each \(j \) and \(\ell \), where \(2^{r-4} \leq j \leq 2^{r-3} - 1 \), \(\ell = r - 2, r - 1, r \), the vertices in the set \(\{(1, 7 \cdot 2^{r-3} + j - 2^\ell \mod \nu)\} \) monitor the vertices in the set \(\{(2, 8 \cdot 2^{r-3} + j - 2^\ell - 1 \mod \nu)\} \). And, for each \(j \) and \(\ell \), where \(j \in [2^{r-4}]_0, \ell = r - 2, r - 1, r \), the vertices in the set \(\{(2, 2^{r-3} + j + 2^\ell - 1 \mod \nu)\} \) monitor the vertices in the set \(\{(1, j + 2^\ell \mod \nu)\} \) by propagation. Hence the set of vertices
monitored at step 2 is given by

\[P_2^2(S) = \{(1, j + 2^\ell \pmod{\nu}) : j \in [2^{r-4}], \ell = r - 2, r - 1, r\} \]

\[\cup \{(2, 8 \cdot 2^{r-3} + j - 2^\ell - 1 \pmod{\nu}) : 2^{r-3} \leq j \leq 2^{r-3} - 1, \ell = r - 2, r - 1, r\} \]

\[\cup P_1^1(S) \]

\[= V(W_{r+1,2r+1}). \]

Therefore every vertex of \(W_{r+1,2r+1} \) gets monitored after step 2 and hence \(S \) is a PDS of \(W_{r+1,2r+1} \) and \(\gamma_P(W_{r+1,2r+1}) \leq |S| = 2^{r-2}. \]

For \(r = 3 \), any singleton set \(\{v\}, v \in W_{4,16} \) cannot itself power dominate the entire graph, as each of the neighbours of \(v \) will have exactly three unmonitored neighbours after the domination step. Hence the bound in Theorem 5.1.2 is sharp for \(r = 3 \). We further illustrate Theorem 5.1.2 for the graph \(W_{5,32} \).

The vertices of the set \(S \) as defined in the theorem are coloured black in Figure 5.1. In Figure 5.2, \(P_1^0(S) \), the set of dominated vertices, are coloured black and the remaining vertices white. The black vertices in Figure 5.3 and Figure 5.4 represent the
vertices in the set $P_1(S)$ and $P_2(S)$, respectively. The directed edges in the figures indicate the direction in which the propagation occurs at each step. For instance, the directed edge $[(2, 2), (1, 1)]$ in Figure 5.3 indicates that $(2, 2)$ monitors $(1, 1)$ in the first propagation step. We observe that all the vertices get monitored by step 2 and therefore S is a PDS of $W_{5,32}$.
5.2 Hanoi graphs

We get from Definition 1.2.21 that H^n_1 is the graph K_1 for any $n \in \mathbb{N}_0$. For $n \in \mathbb{N}_1$, H^n_2 is the disjoint union of 2^{n-1} copies of K_2, i.e. $H^n_2 \cong W_{1,2^{n}}$.

In this section, we study the behaviour of power domination in H^p_2. The cases $p \in [2]$ are trivial with $\gamma_{P,k}(H^2_1) = \gamma_{P,k}(K_1) = 1$ and $\gamma_{P,k}(H^2_2) = 2 = \gamma_{P,k}(W_{1,4})$, respectively, for all k.

Recall that for $p \in \mathbb{N}_3$ and $n = 2$,

$V(H^2_p) = \{s_2s_1 : s_1, s_2 \in [p]_0\}$ and

$E(H^2_p) = \{\{r_i, r_j\}, \{i\ell, j\ell\} : r, i, j \in [p]_0, i \neq j, \ell \in [p]_0 \setminus \{i, j\}\}$.

Vertices of the form ss are called the extreme vertices of H^2_p. Note that the extreme vertices are of degree $p - 1$ and all the other vertices are of degree $2p - 3$ in H^2_p. It is easy to observe that $\gamma(H^2_p) = p$. Indeed, any set containing a vertex from each
of the p cliques in H^2_p forms a dominating set of H^2_p. Since each of the p cliques contains an extreme vertex, any dominating set of H^2_p must contain at least p vertices and hence $\gamma(H^2_p) = p$.

For $p = 3$, H^3_3 is isomorphic to the Sierpiński graph, S^3_3, see [43, p.143 ff]. It is proved (refer Theorem 1.4.12) that

$$
\gamma_{p,k}(S^3_3) = \begin{cases}
1, & n = 1 \text{ or } k \in \mathbb{N}_2; \\
2, & n = 2 \text{ and } k = 1; \\
3^{n-2}, & n \in \mathbb{N}_3 \text{ and } k = 1.
\end{cases}
$$

Therefore $\gamma_{p,1}(H^2_3) = 2$ and $\gamma_{p,k}(H^2_3) = 1$ for $k \in \mathbb{N}_2$.

There are perfect codes for all Hanoi graphs isomorphic to Sierpiński graphs and also for H^2_p [43]. But, for $p \in \mathbb{N}_4$, the Hanoi graphs do not contain perfect codes for $n \in \mathbb{N}_3$, as found out by Q. Stierstorfer [67]. The domination number of these graphs is not known. Therefore we concentrate on $n = 2$. (For $n = 1$, $H^1_p \cong K_p \cong S^1_p$.)

Theorem 5.2.1. Let $p \in \mathbb{N}_4$. Then

$$
\gamma_{p,k}(H^2_p) = \begin{cases}
1, & k \in \mathbb{N}_{p-2}; \\
p - k - 1, & k \in [p-3].
\end{cases}
$$
Proof. Case 1: $k \in \mathbb{N}_{p-2}$.

Let v be an arbitrary vertex in H^2_p. Let K^i_p denote the subgraph induced by the vertices $\{ij : j \in [p]_0\}$. Assume that $v \in K^i_p$ for some i. Let $S = \{v\}$. Then $V(K^i_p) \subseteq \mathcal{P}^0_k(S)$. Since each vertex in K^i_p other than the vertex ii has $p-2$ neighbours outside K^i_p, for any $j \neq i$, $V(K^j_p) \setminus \{jj, ji\} \subseteq \mathcal{P}^1_k(S)$. Hence any vertex $j\ell$ in K^j_p, $\ell \neq i,j$, will have two unmonitored neighbours, namely jj and ji. Since $k \geq p - 2 \geq 2$, these vertices will get monitored by propagation, i.e. $V(K^j_p) \subseteq \mathcal{P}^2_k(S)$. Since this is true for any $j \neq i$, S is a k-PDS of H^2_p.

Case 2: $k \in [p-3]$.
We first prove that $\gamma_{P,k}(H^2_p) \leq p - k - 1$. Let S be the set of vertices $\{i(i-1): i \in [p-k-2]\} \cup \{0(p-k-2)\}$ (For $k = 1$ and $p = 4$, the vertices of S are coloured black in Figure 5.5.) Then $\mathcal{P}^0_k(S) = \{V(K^i_p): i \in [p-k-1]_0\} \cup \{ij: p-k-1 \leq i \leq p-1, j \in [p-k-2]_0\} \cup \{i(p-k-2): p-k-1 \leq i \leq p-1\}$. Let Y be the set of vertices $\{ij: i \in [p-k-1]_0, p-k-1 \leq j \leq p-1\}$. Then any vertex $v = i'j'$ in Y has exactly k unmonitored neighbours given by $\{\ell j': p-k-1 \leq \ell \leq p-1, \ell \neq j'\}$ which will get monitored by propagation. Therefore, the remaining set of unmonitored vertices is given by $\{jj: V(K^j_p) \cap S = \emptyset\}$, which will then get monitored by propagation by its neighbours in K^j_p. Thus S is a k-PDS of H^2_p, which implies $\gamma_{P,k}(H^2_p) \leq p - k - 1$.

We next prove that $\gamma_{P,k}(H^2_p) \geq p - k - 1$. Let S be a k-PDS of H^2_p. Suppose on the contrary that $\gamma_{P,k}(H^2_p) \leq p - k - 2$. Assume first that S has exactly one vertex in p-cliques K^i_p for $i \in \{i_1, \ldots, i_{p-k-2}\}$. Let $\{i_1j_1, \ldots, i_{p-k-2}j_{p-k-2}\}$ be the set of $p-k-2$ vertices in S. Then $S \cap V(K^i_p) = \emptyset$ for any $i' \in I = [p]_0 \{i_1, \ldots, i_{p-k-2}\}$. Let $X = \{i'j_1, \ldots, i'j_{p-k-2}\}$. Then $\mathcal{P}^0_k(S) \cap V(K^i_p) \subseteq X$. This holds for any $i' \in I$. Let $J' = [p]_0 \{j_1, \ldots, j_{p-k-2}\}$. Then the set of vertices $\{i'j': i' \in I', j' \in J'\}$ has an empty intersection with $\mathcal{P}^0_k(S)$. Since every vertex
in H^2_p has either no or more than k neighbours in this set, no vertex from this set can get monitored later on, a contradiction. Assume next that $|S| < p - k - 2$ or that S intersects some K^i_p in more than one vertex. Then we can conclude analogously that not all vertices of K^i_p will be monitored and hence $\gamma_{P,k}(H^2_p) \geq p - k - 1$.

It is obtained in Theorem 1.4.12 that for $p \in \mathbb{N}_4$,

$$
\gamma_{P,k}(S^2_p) = \begin{cases}
1, & k \in \mathbb{N}_{p-1}; \\
p - k, & k \in [p-2].
\end{cases}
$$

We can observe that for $p \in \mathbb{N}_4$, $\gamma_{P,k}(S^2_p) - \gamma_{P,k}(H^2_p) = 1$ if and only if $k \in [p-2]$ and for $k \in \mathbb{N}_{p-1}$, the two values coincide.

We now compute the k-propagation radius of H^2_p. For $p = 3$, it is proved that $\text{rad}_{P,1}(H^2_3) = 2$ and $\text{rad}_{P,k}(H^2_3) = 3$ for $k \in \mathbb{N}_2$ (refer Theorem 1.4.14). The following theorem indicates that the graph H^2_p can be monitored in 3 steps.

Theorem 5.2.2. For $p \in \mathbb{N}_4$, $\text{rad}_{P,k}(H^2_p) = 3$.

Proof. For $k \in \mathbb{N}_{p-2}$, $\gamma_{P,k}(H^2_p) = 1$ and let $S = \{ij\}$ be a k-PDS of H^2_p. If $i \neq j$, we prove that the the vertices ji and jj do
not belong to $\mathcal{P}_k^1(S)$. Clearly, $ji, jj \notin \mathcal{P}_k^0(S)$. Also none of the
neighbours of ji and jj belongs to $\mathcal{P}_k^0(S)$. Therefore, ji and jj
cannot be monitored in step 1. For $i = j$, we can similarly prove
that the vertices ℓi and $\ell \ell$, for $\ell \neq i$, do not belong to $\mathcal{P}_k^1(S)$
and hence $\text{rad}_{P,k}(H_p^2) \geq 3$. To prove the upper bound, consider
the set $S = \{ii\}$. Then,

$$\mathcal{P}_k^0(S) = V(K_p^i),$$
$$\mathcal{P}_k^1(S) = \mathcal{P}_k^0(S) \cup \bigcup \{V(K_p^\ell) \setminus \{\ell i, \ell \ell\} : \ell \in [p] \setminus \{i\}\},$$
$$\mathcal{P}_k^2(S) = \mathcal{P}_k^1(S) \cup \{\ell i, \ell \ell : \ell \in [p] \setminus \{i\}\} = V(H_p^2).$$

Hence $\text{rad}_{P,k}(H_p^2) \leq \text{rad}_{P,k}(G, S) = 3$.

Suppose that $k \in [p - 3]$ and let S be a minimum k-PDS of
H_p^2. Then $\gamma_{P,k}(H_p^2) = p - k - 1$ and thus there exist at least $k + 1$
p-cliques K_p^i not containing any vertex of S. Let $K_p^{i'}$ be an arbitrary
such clique. We prove that the vertex $i'i'$ is not in $\mathcal{P}_k^1(S)$.

Clearly, the vertex $i'i'$ does not belong to $\mathcal{P}_k^0(S)$. Moreover,
$$|V(K_p^{i'}) \cap \mathcal{P}_k^0(S)| \leq p - k - 1$$
and therefore $|V(K_p^{i'}) \setminus \mathcal{P}_k^0(S)| \geq k + 1$. Hence any neighbour of $i'i'$ has more than k
unmonitored vertices preventing any propagation to this vertex on that step.
Thus $i'j'$ is not in $\mathcal{P}^1_k(S)$. To prove the upper bound, consider the set $S = \{i(i - 1) \colon i \in [p - k - 2]\} \cup \{0(p - k - 2)\}$. Then,

\[
\mathcal{P}^0_k(S) = \{V(K^i_p) : i \in [p - k - 1]_0\} \\
\cup \{ij: p - k - 1 \leq i \leq p - 1, j \in [p - k - 1]_0\},
\]

\[
\mathcal{P}^1_k(S) = \mathcal{P}^0_k(S) \cup \{ij: p - k - 1 \leq i, j \leq p - 1, i \neq j\},
\]

\[
\mathcal{P}^2_k(S) = \mathcal{P}^1_k(S) \cup \{ii: p - k - 1 \leq i \leq p - 1\} = V(H^2_p).
\]

\]

\]

5.3 WK-Pyramid networks

In this section, we determine the k-power domination number of $WKP_{(C,L)}$. We also obtain the k-propagation radius of $WKP_{(C,L)}$ in some cases.

Observe from Definition 1.2.22 that WK-Recursive mesh, $WK_{(C,L)}$, has C^L vertices and $\frac{C}{2}(C^L - 1)$ edges. Vertices in $WK_{(C,L)}$ which are of the form $(\bar{a} \ldots \bar{a})$ are called extreme vertices of $WK_{(C,L)}$. Clearly, $WK_{(C,L)}$ contains C extreme vertices of degree $C - 1$ and all the other vertices are of degree C. We
have $WK_{(1,L)} \cong K_1$ ($L \geq 1$), $WK_{(2,L)} \cong P_{2^L}$ ($L \geq 1$) and $WK_{(C,1)} \cong K_C$ ($C \geq 1$).

A vertex of $WK_P(C,L)$ with the addressing scheme $(r, (a_r a_{r-1} \ldots a_1))$ is called a vertex at level r. The part $(a_r a_{r-1} \ldots a_1)$ of the address determines the address of a vertex within the WK-recursive mesh at level r. All vertices in level $r > 0$ of $WK_P(C,L)$ induce a WK-recursive mesh $WK_{(C,r)}$. Hence $|V(WK_P(C,L))| = \sum_{i=0}^{L} C^i = \frac{C^{L+1} - 1}{C - 1}$. Note that $WK_P(C,1) \cong K_{C+1}$ ($C \geq 1$), $WK_P(1,L) \cong P_{L+1}$ ($L \geq 1$). Vertices of the form $(r, (\bar{a} \ldots \bar{d}))$ are called the extreme vertices of $WK_P(C,L)$. The vertex $(0, (1))$ has degree C and at any level except the L^{th} level, the extreme vertices are of degree $2C$ and the other vertices are of degree $2C + 1$. In the L^{th} level, the extreme vertices have degree C and the other vertices have degree $C + 1$.

We shall use the following notations in the rest of the chapter.

Let V_1 and V_2 denote the set of vertices of $WK_P(C,2)$ in levels 1 and 2, respectively. Let Q_i denote a C-clique induced by the set of vertices $\{(2, (ij)): j \in [C]_0\}$ for some i.

For $C, L \in \mathbb{N}_3$, let $w \in [C]_0^{L-2}$. Denote $V_w^{C,L} = \{(L, (wij)) \in$
5.3. WK-Pyramid networks

$WKP_{(C,L)}: i, j \in [C]_0$ and $G^{C,L}_w = \langle V^{C,L}_w \rangle$, i.e. $G^{C,L}_w$ is the induced subgraph in level L of $WKP_{(C,L)}$. In fact, $G^{C,L}_w$ is isomorphic to $WK_{(C,2)}$ for any $w \in [C]_{L-2}$ and any $L \in \mathbb{N}_3$ (Figure 5.6). We first consider the easier case as stated in the following theorem.

Theorem 5.3.1. Let $C, L \in \mathbb{N}_1$. If $C = 1$ or $L = 1$ or $k \geq C$, then $\gamma_{P,k}(WKP_{(C,L)}) = 1$.

Proof. Recall that $WKP_{(C,1)} \cong K_{C+1} (C \geq 1)$ and that $WKP_{(1,L)} \cong P_{L+1} (L \geq 1)$. Hence $\gamma_{P,k}(G) = 1$ for these graphs G.

If $k \geq C$, then take $S = \{(0,(1))\}$. It monitors the vertices in level 1. Since each vertex in level r has exactly C neighbours in its successive level $r+1$, once the level r is monitored, the vertices in level $r + 1$ get monitored by propagation. This propagation goes on till level L and hence S is a k-PDS of $WKP_{(C,L)}$. \qed
We have determined the value of $\gamma_{P,k}(WKP_{(C,L)})$ when $k \geq C$. Now, we consider the remaining case $k \leq C - 1$. We begin with the computation of $\gamma_{P,k}$ for $L = 2$ and will prove in Theorem 5.3.4 that $\gamma_{P,k}(WKP_{(C,2)}) = C - k$ for $C \geq 2, k \leq C - 1$.

We first obtain the following upper bound. For that, we produce a set S of cardinality $C - k$ and prove that S monitors the whole graph in two propagation steps.

Lemma 5.3.2. For $C \in \mathbb{N}_3$ and $k \in [C - 1]$,
$\gamma_{P,k}(WKP_{(C,2)}) \leq C - k$.

Proof. Let $S = \{(1, (i)): k \leq i \leq C - 1\}$. (For $k = 1$ and $C = 5$, the vertices in S are coloured black in Figure 5.7.)

Then $P^0_k(S) = \{(1, (j)): j \in [C]_0\} \cup \{(2, (ij)): k \leq i \leq C - 1, j \in [C]_0\} \cup \{(0, (1))\}$,

$P^1_k(S) = P^0_k(S) \cup \{(2, (ij)): i \in [k]_0, k \leq j \leq C - 1\}$ and

$P^2_k(S) = P^1(S) \cup \{(2, (ij)): i, j \in [k]_0\} = V(WKP_{(C,2)})$.

Hence S is a k-PDS, which implies $\gamma_{P,k}(WKP_{(C,2)}) \leq |S| = C - k$. \hfill \square

Lemma 5.3.3. For $C \in \mathbb{N}_3$ and $k \in [C - 2]$,
$\gamma_{P,k}(WKP_{(C,2)}) \geq C - k$.

Proof. Let S be a minimum k-PDS of $WKP_{(C,2)}$. We may assume that $S \subseteq V^1 \cup V^2$.

Claim: $|S \cap (V^1 \cup V^2)| \geq C - k$.

Suppose on the contrary that $|S \cap (V^1 \cup V^2)| \leq C - k - 1$. We consider the case when S contains vertices from both V^1 and V^2. Assume first that $|S \cap (V^1 \cup V^2)| = C - k - 1$ and that S contains a vertex $(1,(i')) \in V^1$ and the remaining $C - k - 2$
vertices from the C-cliques $Q_{i_1}, \ldots, Q_{i_{C-k-2}}$, where $i' \neq i_\ell$, $\ell \in [C - k - 2]$ such that each of these C-cliques contains exactly one vertex in S. Let Q_ℓ be an arbitrary clique that does not contain any vertex of S, where $\ell \neq i'$. Let $X = \{(2, (\ell i'))\} \cup \{(2, (\ell i_1)), \ldots, (2, (\ell i_{C-k-2}))\}$. Then $P_k^1(S) \cap V(Q_\ell) = X$. This holds for every $l \in I = [C]_0 \setminus \{i', i_1, \ldots, i_{C-k-2}\}$. Thus the set of vertices $J = \{(2, (\ell \ell')): \ell \in I, \ell' \in I\}$ has an empty intersection with $P_k^1(S)$. Since every vertex in $WKP_{(C,2)} - J$ has either 0 or $k + 1$ neighbours in J, no vertex from this set J may get monitored later on, which is a contradiction. Assume next that $|S \cap (V^1 \cup V^2)| < C - k - 1$ or that S intersects some C-clique Q_i in more than one vertex. Then we can analogously conclude that not all vertices of Q_ℓ will be monitored. Now, the case when $S \cap V^1 = \emptyset$ or $S \cap V^2 = \emptyset$ can be proved in a similar manner. Hence the claim.

Therefore, $\gamma_{P,k}(WKP_{(C,2)}) = |S| = |S \cap (V^1 \cup V^2)| \geq C - k$.

From Lemmas 5.3.2 and 5.3.3, we can easily deduce the following theorem.

Theorem 5.3.4. For $C \in \mathbb{N}_2$ and $k \in [C - 1]$,
\[\gamma_{P,k}(WKP_{(C,2)}) = C - k. \]

Proof. Clearly, \(\gamma_{P,1}(WKP_{(2,2)}) = 1 \). Let \(C \geq 3 \). For \(k = C - 1 \), any vertex in level 1 forms a \(k \)-PDS of \(WKP_{(C,2)} \). For \(k \in [C - 2] \), the result follows from Lemmas 5.3.2 and 5.3.3.

Thus we compute \(\gamma_{P,k}(WKP_{(C,2)}) \) for all values of \(k \) and \(C \).

We now consider the case \(C \in \mathbb{N}_3, L \in \mathbb{N}_3 \) and \(k \in [C - 2] \) and prove an upper bound in the following lemma. We construct a set \(S \subseteq V(WKP_{(C,L)}) \) that monitors the whole graph. The idea is to construct \(S \) in such a way that it initially monitors all the vertices of level \(L \) and \(L - 1 \). For that, we use the hamiltonian property of its subgraphs. Since the graph possesses a pyramid structure, each vertex in a level has exactly one neighbour in its preceding level. Therefore once the levels \(L \) and \(L - 1 \) get monitored, the preceding levels can be monitored by propagation.

Lemma 5.3.5. For \(C \in \mathbb{N}_3, L \in \mathbb{N}_3 \) and \(k \in [C - 2] \),

\[\gamma_{P,k}(WKP_{(C,L)}) \leq (C - k - 1)C^{L-2}. \]

Proof. In \(WKP_{(C,L)} \), the vertices in the \(L \)th level induce \(WK_{(C,L)} \) which is hamiltonian [45, 51]. Also, by contracting each of the
subgraphs $G_{w}^{C,L}$ into a single vertex, the graph induced by the vertices in level L is isomorphic to $WK_{(C,L-2)}$. Hence, in level L of $WKP_{(C,L)}$, we can arrange the subgraphs of the form $G_{w}^{C,L}$ into a cycle such that there exists exactly one edge between the consecutive subgraphs. We now construct a set S in such a way that corresponding to each subgraph $G_{w}^{C,L}$ in level L, the set S contains one vertex from the neighbour set of $G_{w}^{C,L}$ in level $L-1$ (which induces a clique) and $C - k - 2$ additional vertices from $G_{w}^{C,L}$.

Let $w', w'' \in [C]_{0}^{L-2}$. Let $G_{w'}^{C,L}, G_{w''}^{C,L}$ and $G_{w'''}^{C,L}$ be consecutive subgraphs in the selected hamiltonian order. Let xx' be the edge between $G_{w}^{C,L}$ and $G_{w'}^{C,L}$, where $x \in G_{w}^{C,L}, x' \in G_{w'}^{C,L}$ and let $y'y''$ be the edge between $G_{w'}^{C,L}$ and $G_{w''}^{C,L}$, where $y' \in G_{w'}^{C,L}, y'' \in G_{w''}^{C,L}$. Let H and Q be the C-cliques in $G_{w'}^{C,L}$ that contain the vertices x' and y', respectively. Denote $x = (L, (wii))$ and $y' = (L, (w'jj))$ for some i and j, $i \neq j$. We now construct a set S as explained above. We first choose the elements of S corresponding to the subgraph $G_{w'}^{C,L}$. Let S contain the vertex $(L - 1, (w'j))$, which is the neighbour of y' in the $(L - 1)^{th}$ level. Then $C - k - 2$ additional vertices from $G_{w'}^{C,L}$ are added to S in such a way that no two vertices lying in the same C-clique in $G_{w'}^{C,L}$ and no
one lying in the C-cliques, H and Q (i.e. $S \cap V(H) = \emptyset$ and $S \cap V(Q) = \emptyset$). Now, do this in parallel for all the corresponding subgraphs. In particular, the vertex $(L - 1, (w_i))$ in the $(L - 1)^{\text{th}}$ level corresponding to the vertex x is put into S, when considering $G_{w'}^{C,L}$. Thus $C - k$ vertices of H lie in $P_k^1(S)$: one of these vertices is x', the other $C - k - 1$ are those vertices of H that have a neighbour in the C-cliques in $G_{w'}^{C,L}$ that contain $C - k - 2$ vertices of S and that have a neighbour in the C-clique Q in $G_{w'}^{C,L}$. Also, the neighbour of H in the $(L - 1)^{\text{th}}$ level belongs to $P_k^0(S)$, since $(L - 1, (w_i)) \in S$. Hence the remaining k vertices of H lie in $P_k^2(S)$ and it is straightforward to check that all the vertices of $G_{w'}^{C,L}$ lie in $P_k^\infty(S)$. In a similar way, every vertex in the L^{th} level is monitored. We know that, for any w, the neighbours of $G_{w'}^{C,L}$ in the $(L - 1)^{\text{th}}$ level induce a C-clique. By the construction of S, each C-clique in the $(L - 1)^{\text{th}}$ level contains a vertex in S. Thus we get that all the vertices in levels $L - 1$ and $L - 2$ belong to $P_k^0(S)$. Now, since each vertex in level $L - 2$ has exactly one neighbour in its preceding level, vertices in the $(L - 3)^{\text{rd}}$ level are monitored by propagation. This propagation continues to the preceding levels and hence the whole graph gets monitored. Thus we conclude that S is a
k-PDS. Since each subgraph $G_{w}^{C,L}$ contains $C - k - 1$ vertices of S, $|S| \leq (C - k - 1)C^{L-2}$.

An illustration of Lemma 5.3.5 is included in the last section of this chapter.

Lemma 5.3.6. For $C \in \mathbb{N}_3$, $L \in \mathbb{N}_3$ and $k \in [C - 2]$,
$$\gamma_{P,k}(WKP(C,L)) \geq (C - k - 1)C^{L-2}.$$

Proof. Let S be a minimum k-PDS of $WKP(C,L)$ and $w \in [C]^{L-2}_0$. Denote $V^{C,L-1}_w = \{(L - 1, (wi)) : (i, (wij)) \in WKP(C,L), i \in [C]_0\}$.

Claim: $|S \cap (V^{C,L}_w \cup V^{C,L-1}_w)| \geq C - k - 1.$

Suppose on the contrary that $|S \cap (V^{C,L}_w \cup V^{C,L-1}_w)| \leq C - k - 2$. Consider the case when $S \cap V^{C,L-1}_w = \emptyset$. Then $|S \cap V^{C,L}_w| \leq C - k - 2$. Assume first that $|S \cap V^{C,L}_w| = C - k - 2$. Let H_i be a C-clique in $G^{C,L}_w$, i.e. H_i is induced by the set of vertices $\{(L, (wi)) : (i, (wij)) \in WKP(C,L), j \in [C]_0\}$ for some i. Assume that S has exactly one vertex in C-cliques H_i for $i \in \{i_1, \ldots, i_{C-k-2}\}$. Then $S \cap V(H_{i'}) = \emptyset$ holds for other $k + 2$ coordinates i'. Let $H_{i'}$ be an arbitrary such clique in $G^{C,L}_w$ that does not contain any vertex of S. Let $X = \{(L, (wli_1)), (L, (wli_{C-k-2}))\} \cup \ldots \cup \{(L, (wli_{C-k-2}))\}$.
5.3. WK-Pyramid networks

\{ (L, (w\ell)) \}. Then \(\mathcal{P}_k^1(S) \cap V(H_\ell) \subseteq X \). This holds for every \(\ell \in I = [C]_0 \setminus \{i_1, \ldots, i_{C-k-2}\} \). Thus the set of vertices
\{ (L, (w\ell')) : \ell \in I, \ell' \in I, \ell \neq \ell' \} has an empty intersection with \(\mathcal{P}_k^1(S) \). Since every vertex in \(WP(C, L) \) has either 0 or \(k + 1 \) neighbours in this set, no vertex from this set may get monitored later on, a contradiction. Assume next that \(|S \cap V^{C,L}_w| < C - k - 2 \) or that \(S \) intersects some \(C \)-clique \(H_i \) in more than one vertex. Then we can analogously conclude that not all vertices of \(H_\ell \) will be monitored. Thus the case that \(S \cap V^{C,L-1}_w = \emptyset \) is not possible.

Now suppose that \(S \cap V^{C,L-1}_w \neq \emptyset \). Assume first that
\[
|S \cap (V^{C,L}_w \cup V^{C,L-1}_w)| = C - k - 2 \]
and that \(S \) contains a vertex \((L-1, (w'\ell')) \in V^{C,L-1}_w\) and the remaining \(C - k - 3 \) vertices from the \(C \)-cliques \(H_{i_1}, \ldots, H_{i_{C-k-3}} \), where \(i' \neq i_\ell, \ell \in [C-k-3] \) such that each of these \(C \)-cliques contains exactly one vertex in \(S \). Let \(H_\ell \) be an arbitrary clique in \(G^{C,L}_w \) that does not contain any vertex of \(S \), where \(\ell \neq i' \). Let \(X = \{(L, (w'\ell')) \} \cup \{(L, (w\ell)) \} \cup \{(L, (w\ell_{i_1})) \}, \ldots, (L, (w\ell_{i_{C-k-3}})) \}. Then \(\mathcal{P}_k^1(S) \cap V(H_\ell) \subseteq X \). This holds for every \(\ell \in I' = [C]_0 \setminus \{i', i_1, \ldots, i_{C-k-3}\} \). Thus the set of vertices
\{ (L, (w\ell')) : \ell \in I', \ell' \in I', \ell \neq \ell' \} has an empty intersection with \(\mathcal{P}_k^1(S) \). Since every vertex in \(WP(C, L) \)
has either 0 or \(k + 1 \) neighbours in this set, no vertex from this set may get monitored later on, which is a contradiction. Assume next that \(|S \cap (V_{w}^{C,L} \cup V_{w}^{C,L-1})| < C - k - 2 \) or that \(S \) intersects some \(C \)-clique \(H_{i} \) in more than one vertex. Then we can analogously conclude that not all vertices of \(H_{\ell} \) will be monitored. Hence the claim \(|S \cap (V_{w}^{C,L} \cup V_{w}^{C,L-1})| \geq C - k - 1 \) is proved. Therefore, \(|S \cap (V(G_{w}^{C,L}) \cup N_{L-1}(G_{w}^{C,L}))| \geq C - k - 1 \), where \(N_{L-1}(G_{w}^{C,L}) \) is the set of neighbours of \(G_{w}^{C,L} \) in the \((L-1)^{th} \) level. Hence corresponding to each \(G_{w}^{C,L} \) in the \(L^{th} \) level, we get at least \(C - k - 1 \) vertices in \(S \).

Hence \(|S| \geq \sum_{w \in [C]}(C - k - 1) = (C - k - 1)C^{L-2}. \)

The following theorem gives the exact value of \(\gamma_{P,k}(WP(C,L)) \) for \(C \in \mathbb{N}_{3}, L \in \mathbb{N}_{3} \) and \(k \in [C - 2] \).

Theorem 5.3.7. For \(C \in \mathbb{N}_{3}, L \in \mathbb{N}_{3} \) and \(k \in [C - 2] \),
\[
\gamma_{P,k}(WP(C,L)) = (C - k - 1)C^{L-2}.
\]

Proof. Follows from Lemmas 5.3.5 and 5.3.6. \(\Box \)

Thus we have the following consolidated result:
Let $C, L \in \mathbb{N}_1$. Then

$$\gamma_{P,k}(WK_P(C,L)) = \begin{cases}
1, & C = 1 \text{ or } L = 1 \text{ or } k \in \mathbb{N}_C; \\
C - k, & L = 2, C \in \mathbb{N}_2, k \in [C - 1]; \\
(C - k - 1)C^{L-2}, & C, L \in \mathbb{N}_3, k \in [C - 2].
\end{cases}$$

For $k = C - 1$, $C \in \mathbb{N}_2$ and $L \in \mathbb{N}_3$, we prove the following upper bound.

Theorem 5.3.8. For $C \in \mathbb{N}_2$ and $L \in \mathbb{N}_3$,

$$\gamma_{P,C-1}(WK_P(C,L)) \leq \left\lceil \frac{L+1}{3} \right\rceil.$$

Proof. We consider three cases.

Case 1: $L = 3m$, $m \in \mathbb{N}_1$.

$$S = \{ \bigcup_{i=1}^{m} (3i - 1, (0)^{3i-1}) \} \cup \{(0, (1))\}.$$

Here, $|S| = m + 1$. Also, $\left\lceil \frac{L+1}{3} \right\rceil = \left\lceil \frac{(3m)+1}{3} \right\rceil = m + 1$.

Case 2: $L = 3m + 1$, $m \in \mathbb{N}_1$.

$$S = \{ \bigcup_{i=1}^{m} (3i, (0)^{3i}) \} \cup \{(1, (0))\}.$$

Here, $|S| = m + 1$. Also, $\left\lceil \frac{L+1}{3} \right\rceil = \left\lceil \frac{(3m+1)+1}{3} \right\rceil = m + 1$.

Case 3: \(L = 3m + 2, \ m \in \mathbb{N}_1. \)

\[
S = \left\{ \bigcup_{i=1}^{m+1} (3i - 2, (0)^{3i-2}) \right\}.
\]

Here, \(|S| = m + 1. \) Also, \(\left\lceil \frac{L+1}{3} \right\rceil = \left\lceil \frac{(3m+2)+1}{3} \right\rceil = m + 1. \)

In each case, \(\mathcal{P}^{C-1}_{C-1}(S) = V(WKP(C,L)) \) and thus \(S \) is a \(k \)-PDS of order \(\left\lceil \frac{L+1}{3} \right\rceil. \) Hence \(\gamma_{P,C-1}(WKP(C,L)) \leq \left\lceil \frac{L+1}{3} \right\rceil. \) \(\square \)

We now determine the \(k \)-propagation radius of \(WKP(C,L) \) for \(C \in \mathbb{N}_1 \) and \(L = 1, 2. \) If \(L = 1, \) the graph is a complete graph and its \(k \)-propagation radius is 1. If \(C = 1, \) \(\text{rad}_{P,k}(WKP_{1,L}) = \text{rad}_{P,k}(P_{L+1}) = \left\lfloor \frac{L+1}{2} \right\rfloor. \)

Lemma 5.3.9. Let \(C \in \mathbb{N}_3, \ k \in [C - 1] \) and \(S \) be a minimum \(k \)-PDS of \(WKP(C,2). \) Then \(S \cap V^1 \neq \emptyset. \)

Proof. Suppose that \(S \cap V^1 = \emptyset. \) Consider the case when \((0, (1)) \notin S. \) Then by Theorem 5.3.4, \(|S \cap V^2| = C - k. \)

Assume first that \(S \) has exactly one vertex in \(C \)-cliques, \(Q_i, \) for \(i \in \{i_1, \ldots, i_{C-k}\}. \) Then \(S \cap V(Q_i) = \emptyset \) for \(k \) coordinates \(i'. \) Let \(Q_\ell \) be an arbitrary such subgraph. Let \(X = \{(2, (\ell i_1)), \ldots, (2, (\ell i_{C-k}))\}. \) Then \(\mathcal{P}_k^1(S) \cap V(Q_\ell) = X \) and \(\mathcal{P}_k^1(S) \cap V^1 = \{(1, i_1), \ldots, (1, i_{C-k})\}. \) This holds for any \(\ell \in \)
\[J = [C]_0 \setminus \{i_1, \ldots, i_{C-k}\}. \] Therefore the set of vertices \(K = \{(2,(ij)) : i,j \in J\} \cup \{(1,(i)) : i \in J\} \cup \{(0,(1))\} \) has an empty intersection with \(P_k^1(S) \). Since every vertex of \(WK\,P_{(C,2)} - K \) has either 0 or \(k+1 \) neighbours in \(K \), no vertex from this set may get monitored later on, a contradiction. The case when \((0,(1)) \in S\) or that \(S \) intersects some \(Q_i \) in more than one vertex can be proved analogously.

We can now determine the \(k \)-propagation radius of \(WK\,P_{(C,2)} \) using the previous lemma.

Theorem 5.3.10. Let \(C \in \mathbb{N}_2 \). Then

\[
\text{rad}_{P,k}(WK\,P_{(C,2)}) = \begin{cases}
2, & k \geq C; \\
3, & k \in [C-1].
\end{cases}
\]

Proof. For \(k \geq C \), \(\gamma_{P,k}(WK\,P_{(C,2)}) = 1 \), by Theorem 5.3.1 and observe that \(\gamma(WK\,P_{(C,2)}) > 1 \). Therefore, \(\text{rad}_{P,k}(WK\,P_{(C,2)}) \geq 2 \) (by Proposition 1.4.13). And, for the set \(S = \{(0,(1))\} \), we get that \(P^0_k(S) = S \cup V^1 \) and \(P^1_k(S) = V(WK\,P_{(C,2)}) \). Now let \(k \in [C-1] \). For \(C = 2 \), the result easily follows. Let \(C \geq 3 \). By Theorem 5.3.4, \(\gamma_{P,k}(WK\,P_{(C,2)}) = C-k \) and therefore by Lemma 5.3.9, \(|S \cap V^2| \leq C - k - 1 \) for every minimum
k-PDS S. Then there exist at least $k + 1$ C-cliques, Q_i, not containing any vertex of S. Let Q_ν be an arbitrary clique such that $S \cap V(Q_\nu) = \emptyset$ and $(1, (i')) \notin S$. We prove that the vertex $(2, (i'i'))$ is not in $P^1_k(S)$. Clearly, $(2, (i'i')) \notin P^0_k(S)$. Moreover, $|V(Q_\nu) \cap P^0_k(S)| \leq C - k - 1$ and $|V(Q_\nu) \setminus P^0_k(S)| \geq k + 1$. Therefore any neighbour of $(2, (i'i'))$ in Q_i' is adjacent to more than k unmonitored vertices preventing any propagation to this vertex at this step. Also, since $(1, (i'))$ has more than k unmonitored vertices as its neighbours, $(2, (i'i'))$ cannot be monitored by $(1, (i'))$ at this step. Hence $\text{rad}_{P,k}(WKP(C,2)) \geq 3$. Also, by Lemma 5.3.2, $\text{rad}_{P,k}(WKP(C,2)) \leq L$.

Remark 5.3.1. For $C, L \in \mathbb{N}_3$, by observing the propagation behaviour described in the proof of Theorem 5.3.1 and Lemma 5.3.5, one can obtain that $\text{rad}_{P,k}(WKP(C,L)) \leq L$ if $k \geq C$ and $\text{rad}_{P,k}(WKP(C,L)) \leq \max\{5, L - 1\}$ if $k \in [C - 2]$.

Illustration of Lemma 5.3.5

We illustrate Lemma 5.3.5 for the case $k = 1, C = 5$ and $L = 3$. Figure 5.8 depicts the graph $WKP(5,3)$. We know the vertices in
the third level of $WKP_{(5,3)}$ induce the subgraph $WK_{(5,3)}$ which is hamiltonian. And, the cycle in the subgraph $WK_{(5,3)}$, as defined in Lemma 5.3.5, are drawn as bold edges in the figure. The consecutive subgraphs $G_{w}^{5,3}$, $G_{w'}^{5,3}$, and $G_{w''}^{5,3}$ in the hamiltonian cycle of $WK_{(5,3)}$ and the vertices x, x', y' and y'' as chosen in the lemma are also marked in the figure. The vertices of the set S as constructed in the lemma are coloured black in Figure 5.8.

In Figure 5.9, the vertices in the set $P_0^1(S)$, are coloured black and the remaining vertices white. The black vertices in Figure 5.10 and Figure 5.11 represent the vertices in the set $P_1^1(S)$ and $P_2^1(S)$, respectively. The directed edges in the figures indicate the direction in which the propagation occurs at each step.

We can observe that all vertices of $WKP_{(5,3)}$ get monitored by step 2 and $P_2^2(S) = V(WKP_{(5,3)})$. Therefore, S is a 1-PDS of $WKP_{(5,3)}$ and $|S| = 15 = (5 - 1 - 1) \cdot 5^{3-2}$.
Figure 5.8: The graph $WKP_{(5,3)}$.

Figure 5.9: $\mathcal{P}_1^0(S)$.

Chapter 5. Power domination in some classes of graphs
5.3. WK-Pyramid networks

Figure 5.10: $\mathcal{P}_1^1(S)$.

Figure 5.11: $\mathcal{P}_1^2(S)$.
Chapter 5. Power domination in some classes of graphs