CHAPTER-7
SUMMARY, CONCLUSION
IMPLICATIONS, RECOMMENDATIONS AND LIMITATION

7.1 SUMMARY:

The baseline cause selected for the study among the elderly was hypertension. Although hypertension is a treatable ailment with allopathic medicines but there is enough scope for holistic nursing interventions to reduce the geriatric morbidities.

The unmet need of specially designed and proven instrumental music therapy to help reduce blood pressure of elderly hypertensive persons is the need of the hour.

In India, the elderly people are in need of reliable recreational activities, which can promote their emotional, mental and social health so that they can adjust to their geriatric homes, which are different and away from their traditional dwelling homes.

In recent years, the complementary therapies especially music therapy have shown positive effects on the biophysical and psychological parameters of the elderly.

Very few such studies are conducted even in the developed countries.

Hence, a study was conducted to assess the effect of Indian classical music on the biophysical and psychological parameters of the elderly hypertensive subjects.

The statement of the problem:

Objectives of the study:

Is music therapy having an effect on biophysical and psychological parameters of elderly hypertensive subjects in the experimental group?

By assessing the biophysical parameters like pulse rate, respiration rate, blood pressure and EEG the effectiveness of music therapy on biophysical problems can be identified.

By assessing the subjective well being inventory (SWBI) the effectiveness of music therapy on the psychological problems can be identified. If so,
Is there any association between biophysical and psychological problems of the elderly subjects with the selected demographic variables?

By analysing statistically, the association between the biophysical and psychological problems of the elderly and the selected demographic variables can be found out.

Hypotheses were

H1: There will be a significant difference between the Pre test and Post test level of biophysical and psychological problems of elderly after administering Music Therapy among them.

H2: There will be a significant association between Post interventional levels of biophysical and psychological problems of the elderly subjects and selected demographic variables.

The major assumptions of the study were:

The elderly population, residing in the geriatric homes, is the most vulnerable group for biophysical and psychological problems that lead to increase in the morbidity and mortality rates.

Music therapy, one of the complementary therapies, helps in preventing the complications of the health problems.

Conceptual framework adopted:

The study is based on the concept that administration of specially designed instrumental music on Sitar based on well known Raga Malkauns for duration of 22 minutes to elderly hypertension patients will reduce the biophysical & psychological problems of elderly hypertensive subjects.

This Quasi experimental study was conducted in selected Geriatric homes in Kancheepuram district. Two almost identical geriatric homes, run by the same trust, were selected for the research study.

In the experimental group, total male and female geriatric population was 392 (N1) in a geriatric home. Inclusion criteria were followed and only the subjects who could listen clearly after conducting whisper test were selected.
as experimental group. Among them, 101 (n1) were selected by using purposive sampling technique within the age group of 60-90 years.

In the control group, total number of male and female geriatric population was 276 (N2). Among them 108 (n2) were selected for the study.

In both the groups, as a Pre test, their biophysical parameters checked were, pulse rate, respiration rate, blood pressure and EEG. Also, a structured questionnaire, Subjective Well Being Inventory, a modified WHO scales, was used to assess the psychological problems. The questionnaire has 25 questions which consist of, Quality of life (6), Relationship with family and others (8), Mood changes (6), Subjective feelings about health (4) and sleep (1).

Pre test was done before the intervention of administration of music therapy.

It was administered to the participants who were included in listening to a specially designed instrumental music based on raga Malkauns, for duration of 22 minutes at a specified time in the evening for a period of 30 days.

All the above mentioned tests were repeated on the 31st day for the experimental group.

In the control group, 8 elderly samples dropped out due to their sickness. So the post test was done only for 100 (n2) samples.

Data was analysed using Univariate, Bivariate and Multivariate statistical methods.

Demographic variables in categorical/dichotomous were given in frequencies with their percentages.

Biophysical parameters and SWBI score were given with the mean values and standard deviation.

Categorical variables were anlaysed using chi Square method.

Quantitative variables were analysed using student independent t-test, student dependent t-test, repeated measures of analysis of variance.

Differences between the Pre test and Post test score was analysed using proportion with 95\% CI and the mean difference with 95\% CI.
Correlation between SWBI score and biophysical parameters was analysed using Karl Pearson correlation coefficient method.

Influencing factors for gain and reduction score were identified using multivariate logistic regression method.

Simple bar diagram, Multiple bar diagram, Box plot, Deviation bar diagram and scatter plot matrix with regression estimate were used to represent the data (P<0.05) was considered statistically significant.

EEG Statistical Analysis:

FFT Power spectrum analysis was applied.

For analyzing the mean alpha, beta and theta power scores in O1, O2, T3, T4, T5, T6 EEG leads, LAB VIEW, SPSS version 21 statistical software was used.

Major findings of the study:

1. The mean values of baseline biophysical parameters were compared between the two study groups, using student t-test.
 a. The mean systolic blood pressure (161.60mmHg in the experimental & 161.00mmHg in the control group) and mean diastolic blood pressure (100.10mmHg in the experimental & 98.60mmHg in the control group) were falling in the range of Stage II hypertension in the study groups.
 b. The mean pulse rate in the experimental group was 84.34 beats per minute and in the control group it was 84.40 beats per minute.
 c. The mean respiration rate was 21.78 breaths per minute in the experimental group and 21.98 breaths per minute in the control group.

 Hence, no statistically significant difference in the blood pressure, pulse rate and respiratory rate was observed between the study groups at baseline (P value< 0.05.).

2. After 1 month, the mean values of biophysical parameters, pulse rate, respiration rate and the blood pressure were compared between both the study groups, using student t-test.
 a. Mean systolic blood pressure (SBP) in the experimental group was 151.85mmHg and in the control group it was 161.60mmHg. The difference between the baseline and 1 month was 9.75mmHg. This mean difference was statistically significant.
b. Mean systolic blood pressure (SBP) in the control group was 161.00mmHg at baseline and after 1 month it was 160.40mmHg. The mean difference between the baseline and 1 month was 0.60mmHg. This mean difference was not statistically significant. Both these differences were analyzed using Student paired-test.

c. One month after music therapy, the mean diastolic blood pressure (DBP) in the experimental group was 95.70mmHg and in the control group it was 98.22mmHg, with a mean difference of 2.52mmHg. This was large and statistically significant (P value= 0.05).

d. In the experiment group, the mean pulse rate after 1 month was 82.80 beats per minute, with a mean difference of 1.54 beats per minute. This was statistically significant.

e. In the control group, the mean pulse rate was 84.13 beats per minute, with a mean difference of only 0.27 beats per minute. This was statistically not significant.

f. After 1st month of music therapy, the mean respiratory rate in the experiment group was 20.90 breaths per minute and in the control group it was 21.83 breaths per minute, with a mean difference of 0.93 breaths per minute. This mean difference was large and statistically significant

3. Atenolol was the most common drug used in both the study groups.
 a. The proportion of subjects using twice daily dose of medication was 44.6% in the experimental group and 47% in the control group.
 b. This proportion was reduced to 32.7% after 1 month of music therapy in the experimental group but remained same in the control group.
 c. Statistically there was a significant difference between the proportion of subjects using twice daily dose in the experimental and control group after 1 month. It was calculated using chi square test.

4. Subjective well being inventory (SWBI) score was assessed at baseline level.
 a. Majority (95%) of the participants in both the study groups came under moderate well being category using SWBI score.
 b. Only 5% of the participants in each group were classified to have poor SWBI score. There was no statistically significant difference in baseline level of SWBI score among the study groups.
5. Subjective well being inventory (SWBI) score: After one month, the mean subjective well being score in the experimental group was 52.82 and it was 46.38 in the control group, with a mean difference 6.44. This was statistically significant.

6. Drugs: Dose of medicines administered to the study groups. At baseline, the proportion of subjects using twice daily drug dose was 44.6% in the experimental group and 47% in the control group. After 1 month of music therapy, the proportion was reduced to 32.7% in the experimental group, but it remained same in the control group. It was calculated using chi square test.

7. The Influencing Factors: Marriage had more (1.86 times) and exercise (2.13 times) reduction in the mean systolic blood pressure (SBP) among the demographic variables of the experimental group.

8. Literacy (3.44 times) and exercise (3.44 times) had more reduction in the mean diastolic blood pressure (DBP) among the demographic variables of the experimental group.

9. Females (1.9 times) and exercise (2.05 times) had more reduction in the mean pulse rate among the demographic variables of the experimental group.

10. Interest (2.89 times) and exercise (3.58 times) had more reduction in the mean respiration among the demographic variables of the experimental group.

11. Age (< 70 yrs) had 1.95 times and income had 2.55 times had more mean gain score of SWBI among the demographic variables of the experimental group. The above factors were recognized using the multivariate logistic regression.

12. Female gender, married people and people walking regularly had statistically significant association (P≤0.05) with respect to the effect on mean systolic blood pressure (SBP) reduction scores, compared to their counter parts.

13. People aged between 61 to 70 years, females, and the people who are walking had achieved statistically significant (P≤0.05) reduction in the mean diastolic blood pressure (DBP) scores, compared to their counterparts.

14. Female gender, higher educational status, people who are walking and higher family income had statistically significant (P≤0.05) association with respect to the mean reduction in the mean Pulse rate, compared with their counter parts.

15. Female gender, married people, people, interested in games and people, walking regularly had statistically significant (P≤0.05) reduction in the mean respiratory rate, than their counterparts.
Association of the effect of music therapy with the demographic variables was calculated using chi square test.

16. EEG: The EEG data was collected (the mean alpha, beta & theta power scores) from O1, O2, T3, T4, T5 and T6 leads of EEG, for 2 minutes and 22 minutes at baseline level and after 1 month in the control group without any intervention. The same was collected in the experimental group at baseline level and after 1 month of music therapy. The EEG data was analysed by using LABVIEW SPSS version 21. The results were statistically analysed by using student independent t-test. Results of different EEGs are being discussed in the following lines.

17. By comparing the Pre test mean Power scores of 2 minutes EEG from Occipital lead (O1), it was observed that the mean difference in the mean alpha power score between the experimental and control groups was 63.44, the mean beta power score was 18.28 and the mean theta power score was 0.67. The results were not statistically significant (Table 42).

18. By comparing the Post test mean Power score of 2 minutes EEG from Occipital lead (O1), it was observed that the mean difference in the mean alpha power score between the study groups, was 149.52, the mean beta power score was 82.24 and the mean theta power score was 11.27. The results were statistically very significant (Table 43).

19. By comparing the Pre test mean Power score of 22 minutes EEG from Occipital lead (O1), it was observed that the mean difference in the mean alpha power score between the study groups was 28.22, the mean beta power score was 1.02 and the mean theta power score was 2.63. The results were not statistically significant (Table 44).

20. By comparing the Post test mean Power score of 22 minutes EEG from the Occipital lead (O1), it was observed that the mean difference in the alpha power score between the study groups, was 204.44, the mean beta power score was 4.00 and the mean theta power score was 47.68. The results were statistically significant (Table 45).

21. By comparing the Pre test mean Power scores of 2 minutes EEG from Occipital lead (O2), it was observed that the mean difference in the mean alpha power score between the study groups was 22.80, the mean beta power score was 10.10
and the mean theta power score was 18.54. The results were not statistically significant (Table 46).

22. By comparing the Post test mean Power scores of 2 minutes EEG from Occipital lead (O2), it was observed that the mean difference in the mean alpha power score between the study groups, was 120.20, the mean beta power score was 10.48 and the mean theta power score was 9.12. The results were statistically significant (Table 47).

23. By comparing the Pre test mean Power scores of 22 minutes EEG from the Occipital lead (O2), it was observed that the mean difference in the mean alpha power score between the study groups, was 4.00, the mean beta power score was 3.60 and the mean theta power score was 0.28. The results were not statistically significant (Table 48).

24. By comparing the Post test mean Power scores of 22 minutes EEG from the Occipital lead (O2), it was observed that the mean difference in the mean alpha power score between the study groups, was 59.64, the mean beta power score was 30.04 and the mean theta power score was 2.21. The results were statistically significant (Table 49).

25. By comparing the Pre test mean Power scores of 2 minutes EEG from middle left Temporal lead (T3), it was observed that the mean difference in the mean alpha power score between the study groups was 7.96, the mean beta power score was 4.00 and the mean theta power score was 0.80. The results were not statistically significant (Table 50).

26. By comparing the Post test mean Power score of 2 minutes EEG from middle left Temporal lead (T3), it was observed that the mean difference in the mean alpha power score between the study groups, was 53.60, the mean beta power score was 23.56 and the mean theta power score was 7.50. The results were statistically significant (Table 51).

27. By comparing the Pre test mean Power score of 22 minutes EEG from middle left Temporal lead (T3), it was observed that the mean difference in the mean alpha power score between the study groups was 68.006, the mean beta power score was 43.64 and the mean theta power score was 6.58. The results were not statistically significant (Table 52).

28. By comparing the Post test mean Power score of 22 minutes EEG from middle left Temporal lead (T3), it was observed that the mean difference in the mean
alpha power score between the study groups, was 68.00, the mean beta power score was 43.6 and the mean theta power score was 6.58. The results were statistically significant (Table 53).

29. By comparing the Pre test mean Power scores of 2 minutes EEG from middle right Temporal lead (T4), it was observed that the mean difference in the mean alpha power score between the study groups was 3.60, the mean beta power score was 1.38 and the mean theta power score was 0.40. The results were not statistically significant (Table 54).

30. By comparing the Post test mean Power score of 2 minutes EEG from middle right Temporal lead (T4), it was observed that the mean difference in the mean alpha power score between the study groups, was 51.40, the mean beta power score was 43.37 and the mean theta power score was 29.87. The results were statistically significant (Table 55).

31. By comparing the Pre test mean Power score of 22 minutes EEG from middle right Temporal lead (T4), it was observed that the mean difference in the mean alpha power score between the study groups was 0.92, the mean beta power score was 22.80 and the mean theta power score was 1.00. The results were not statistically significant (Table 56).

32. By comparing the Post test mean Power score of 22 minutes EEG from middle right Temporal lead (T4), it was observed that the mean difference in the mean alpha power score between the study groups, was 29.44, the mean beta power score was 74.28 and the mean theta power score was 8.70. The results were statistically significant (Table 57).

33. By comparing the Pre test mean Power scores of 2 minutes EEG from posterior left Temporal lead (T5), it was observed that the mean difference in the mean alpha power score between the study groups was 1.40, the mean beta power score was 3.68 and the mean theta power score was 0.74. The results were not statistically significant (Table 58).

34. By comparing the Post test mean Power score of 2 minutes EEG from posterior left Temporal lead (T5), it was observed that the mean difference in the mean alpha power score between the study groups, was 75.36, the mean beta power score was 49.84 and the mean theta power score was 8.76. The results were statistically highly significant (Table 59).
By comparing the Pre test mean Power score of 22 minutes EEG from posterior left Temporal lead (T5), it was observed that the mean difference in the mean alpha power score between the study groups was 17.20, the mean beta power score was 2.84 and the mean theta power score was 0.12. The results were not statistically significant (Table 60).

By comparing the Post test mean Power score of 22 minutes EEG from posterior left Temporal lead (T5), it was observed that the mean difference in the mean alpha power score between the study groups, was 79.44, the mean beta power score was 67.68 and the mean theta power score was 11.53. The results were statistically highly significant (Table 61).

By comparing the Pre test mean Power scores of 2 minutes EEG from posterior right Temporal lead (T6), it was observed that the mean difference in the mean alpha power score between the study groups was 13.44, the mean beta power score was 1.56 and the mean theta power score was 0.11. The results were not statistically significant (Table 62).

By comparing the Post test mean Power score of 2 minutes EEG from posterior right Temporal lead (T6), it was observed that the mean difference in the mean alpha power score between the study groups, was 128.84, the mean beta power score was 69.98 and the mean theta power score was 15.06. The results were statistically highly significant (Table 63).

By comparing the Pre test mean Power score of 22 minutes EEG from posterior right Temporal lead (T6), it was observed that the mean difference in the mean alpha power score between the study groups was 14.60, the mean beta power score was 7.00 and the mean theta power score was 0.78. The results were not statistically significant (Table 64).

By comparing the Post test mean Power score of 22 minutes EEG from posterior right Temporal lead (T6), it was observed that the mean difference in the mean alpha power score between the study groups, was 140.44, the mean beta power score was 73.33 and the mean theta power score was 14.62. The results were statistically highly significant (Table 65).

From the study of results of Power Spectrum Analysis of EEGs from O1, O2, T3, T4, T5, and T6 leads, statistically highly significant results were observed in T5 and T6 leads. The results from the posterior temporal leads (T5 and T6) were better than the middle temporal leads (T3 and T4). It has observed that there is
right hemisphere dominance in non musician and left hemisphere dominance in the trained musicians. Since, the study subjects were non musicians, the Power Spectrum Analysis of EEG from T6 lead of the brain was selected for graphic representation.

42. Graph 4 compares the mean power scores of alpha, beta and theta waves in Pre test EEG of 2 minutes of the control group. The mean alpha power is 53%, the mean beta power score is 3.2 % and mean theta power score is 36%.

43. Graph 5 compares the mean power scores of alpha, beta and theta waves in Post test EEG of 22 minutes of the control group. The mean alpha power is 58%, the mean beta power score is 2.2 % and mean theta power score is 35%.

44. Based on comparison of Graph 4 and Graph 5, we observe an increase of 5% in the mean alpha power score, reduction of 1% in the mean beta power score and reduction of 1% in the mean theta power score. The changes clearly indicate that there is no change in Power Spectrum Analysis of EEG in the control group. There is no statistically significant difference.

45. Graph 6 compares the mean power scores of alpha, beta and theta waves in Pre test EEG of 2 minutes of the experimental group. The mean alpha power is 49%, the mean beta power score is 9.8 % and mean theta power score is 36%.

46. Graph 7 compares the mean power scores of alpha, beta and theta waves in Post test EEG of 22 minutes of the experimental group. The mean alpha power is 78%, the mean beta power score is 0.95% and mean theta power score is 18%.

47. From the comparison of Graph 6 and Graph 7, we observe an increase of 29% in the mean alpha power score, reduction of 8.85% in the mean beta power score and reduction of 18% in the mean theta power score. The study results clearly indicate that the specially designed instrumental music (Sitar) based on Raga Malkauns produced statistically highly significant changes in the temporal region of the brain, which is associated with the hearing compared to the results from the occipital region of the brain, which controls the vision.

7.2. CONCLUSION:

1. Music therapy resulted in statistically significant reduction in both the mean systolic and diastolic blood pressures in the experimental group compared to standard care received by control group.
2. There was a statistically significant reduction in the mean respiratory rate in the experimental group, who received the music therapy, compared to the control group.

3. There was statistically significant improvement in the mean subjective well being inventory, (SWBI) score in the experimental group, who received the music therapy compared to the control group.

4. Compared to the baseline values, the mean blood pressure, respiratory rate and the subject well being score have shown improvement even within the music therapy group after one month of music therapy.

5. Relatively the younger age group, the married people and the people who were exercising regularly benefited more compared to their counterparts from the music therapy group.

6. The experimental group receiving music therapy has shown statistically significant mean alpha scores compared to the control group.

7. The experimental group has shown statistically highly significant mean alpha scores from both the left and right posterior temporal leads (T5 and T6) compared to other EEG leads.

8. The EEG results from T5 and T6 leads prove that the specially designed instrumental music based on Hindustani Classical Raga Malkauns is perceived clearly by the primary auditory centres of the brain.

9. The EEG results also authenticate that the subjective evaluations in the form of mean blood pressure, pulse rate, respiration rate and subjective well being scores were done rightly and without any bias or manipulation.

7.3. LIMITATIONS:

1. The sampling method adopted in the study was a purposive sampling method. Since no random sampling was adopted the role of selection could not be ruled out from the study completely.

2. Considering the nature of music therapy intervention blinding was not feasible in the study. Hence there was a probability of reporting bias, especially the subjective well being inventory assessment part of the study.
7.4. RECOMMENDATIONS:

Replication of the study may be done with larger samples to strengthen the general application of the outcome of the study.

A comparative study can be conducted in two different settings; the elderly residing in the geriatric home and at traditional homes; a rural community setting or between rural and urban community etc.

Longitudinal study can be conducted for 3 months, 6 months, one year and above periods of intervention.

Periodical assessment could be made and analysed to find the cumulative effect of music therapy.

A study can be done to determine the effect of music therapy for the elderly with other illnesses associated with hypertension.

7.5. IMPLICATIONS

Elderly facing the physiological changes are overwhelmed by the symptoms of both the biophysical and psychological problems.

They always seek a safe sail of life journey in a storm of uncertainty.

The healing power has been recognized for centuries but is reaching its heights in the building body of knowledge now and its use is being felt only now in India.

Nursing healing repertoire includes music therapy as one of the many non-pharmacological comforting interventions.

The challenge for nurses is to negotiate the differing perspectives in order to provide appropriate care to each and every elderly man and woman as they experience biophysical and psychological problems and their management.

Implication for Geriatric Care Providers:

Geriatric care providers including geriatric nurses working in the geriatric clinics and other health care settings can choose music therapy as part of holistic nursing intervention for the elderly patients.

Music can accompany diagnostic and therapeutic procedures.

The allocation of budget for alternative therapies with special emphasis on the music therapy should be made adequate.
Funded projects in this field will enhance the quality of care and health of the elderly.

The team members should be given adequate instructional materials, such as, different types of music tapes or CD’s and instruments, related documents, flow sheets and feedback protocols.

Implication for Nursing Practice:

The nurses working in the hospital, community, health centers, schools, colleges and recreational centers must use music as one of the interventions to reduce the anxiety of various kinds.

Music could be kept as an optional therapy for the individuals receiving care.

Group music listening with programmed instruction could be practiced for promoting wellbeing.

Music could relax individual during certain investigations (which do not estimate the biophysical parameters like blood pressure, pulse rate and respiration rate etc.) such as EEG, ECG, Echo-cardiography, Tread Mill Test, and Pain Assessment and during mental status examination.

A daily dose of music can be given as a routine for long term hospitalized, cardiac patients whose blood pressure cannot be controlled thereby preventing the complications for the terminally ill patients.

Community health nurse can use music in family care especially geriatric care.

Home care modules can include music therapy with appropriate methodology.

Implications for Nursing Education:

Nurse educationists can teach the ideal methodology of using music in the clinical and community setting to staff nurses and students. They can develop music therapy protocols, can help in planning therapy sessions and proper implementation and evaluation in terms of patients’ expressions.

Nursing clinics, rounds, orders and conferences can have music intervention as one of the themes for deliberation.

Continuing nursing education cell could organize music therapy Workshops for scientific use of the same in the clinical setting.

Nursing student's clinical rotation can cover music therapy unit in geriatric care centers if available.
Curriculum for various nursing programmes must have music intervention along with the other alternative and complementary therapy.

Public nurse educators should teach the various approaches and techniques of the music therapy for the prevention of illnesses and promotion of health among the general public.

Implication for Nursing Administration:

Leaders in nursing are challenged to undertake the health needs of the most vulnerable section of society by effective organization and management systems.

The nurse administrator should take active part in policy making, developing, validating and approving protocols and procedures and standing orders concerning the use of music for health of elderly in particular.

They should concentrate on the proper selection, placement and effective utilization of the nurses in all the areas giving room for creativity, interest and ability in providing music therapy for the needed ones.

They must provide opportunity for innovations, trial of emerging trends in the music therapy in fostering care.

An ongoing education programme on educative role of the nurses along with good supervision of nursing care service would motivate nurses to carry out the role as a music therapist or utilize music in day to day patient care.

Publishing the use of music and trial of music trend would help sharing of knowledge and strengthening practice in various settings.

Tele-nursing conferencing with national and international institutions would bring to nurses the confidence and rationale use of music in the practice of their profession.

Implication for Nursing Research:

The music therapy used in the study has helped reduce the biophysical and psychological problems of the experimental group.

It could be administered for elderly persons either independently or together in improving the biophysical parameters at different stages of nursing care.

The extent and the duration of the effect of music need to be discovered.

This study leads to many research questions that are to be answered.

Research in all these areas can promote geriatric health and help in prevention of many diseases.
Nursing researches replicating this study would strengthen general application of the music therapy.

Newer modules and protocols both for teaching and practicing and tailor made to suit the elderly population should be tested and utilized.

The findings of this study can lead researchers to explore various other angles with different points of focus.

Implication for Nursing Theory:
- Very few theories have been developed in the field of geriatric nursing.
- This study may give wide scope for theory development with focus to using music as the nursing intervention.

Implication for Independent Nursing Practice:
- The scope of nursing is getting wider in holistic approach towards the health.
- The emergence of alternative and complementary therapies has expanded and can be extended to the holistic nursing practice.
- The music therapy is the new area that could be practiced independently by the nurse specialist like acupressure, acupuncture, physiotherapy and yoga etc.
- Nurses can contribute as scientists at Music libraries, Music therapy centers, Music therapy units in hospitals, Home music therapy, Internet music therapy, Music therapy sessions through radio and television, live music therapy session, School and college music programmes, Special children music programmes, Hospice, Day care centers and half way homes.
- Spirituality, guided imagery, massages, exercises, aromatherapy, meditation and yoga merged with music can provide better natural effects without side effects.
- This will also promote quality of life of the elderly.