3. AN INVENTORY MODEL WITH PROMOTIONAL EFFORT, VARIABLE PRODUCTION AND PROBABILISTIC DETERIORATION
 3.1 INTRODUCTION 43
 3.2 PROBLEM DESCRIPTION 45
 3.3 NOTATIONS AND ASSUMPTIONS 45
 3.4 FORMULATION OF THE MODEL 47
 3.5 SOLUTION PROCEDURE 52
 3.6 NUMERICAL EXAMPLES 57
 3.7 SENSITIVITY ANALYSIS 62
 3.8 CONCLUSION 64

4. AN INVENTORY MODEL WITH FINITE REPLENISHMENT, TRADE CREDIT AND PROBABILISTIC DETERIORATION
 4.1 INTRODUCTION 66
 4.2 PROBLEM DESCRIPTION 67
 4.3 NOTATIONS AND ASSUMPTIONS 68
 4.4 FORMULATION OF THE MODEL 69
 4.5 SOLUTION PROCEDURE 78
 4.6 NUMERICAL EXAMPLES 84
 4.7 SENSITIVITY ANALYSIS 96
 4.8 CONCLUSION 99

5. AN INVENTORY MODEL WITH VARIABLE PRODUCTION COST, TIME DEPENDENT HOLDING COST, PARTIAL BACKLOGGING AND INFLATION
 5.1 INTRODUCTION 100
 5.2 PROBLEM DESCRIPTION 103
 5.3 NOTATIONS AND ASSUMPTIONS 103
 5.4 FORMULATION OF THE MODEL 105
6. **AN INVENTORY MODEL WITH NON-INSTANTANEOUS DETERIORATION, PARTIAL BACKLOGGING AND INFLATION OVER A FINITE TIME HORIZON**

6.1 **INTRODUCTION**
 6.2 **PROBLEM DESCRIPTION**
 6.3 **NOTATIONS AND ASSUMPTIONS**
 6.4 **FORMULATION OF THE MODEL**
 6.5 **SOLUTION PROCEDURE**
 6.6 **NUMERICAL EXAMPLES**
 6.7 **SENSITIVITY ANALYSIS**
 6.8 **CONCLUSION**

7. **AN INVENTORY MODEL WITH NON-INSTANTANEOUS DETERIORATION, TRADE CREDIT, PARTIAL BACKLOGGING AND INFLATION FOR A TWO-WAREHOUSE SYSTEM**

7.1 **INTRODUCTION**
7.2 **PROBLEM DESCRIPTION**
7.3 **NOTATIONS AND ASSUMPTIONS**
7.4 **FORMULATION OF THE MODEL**
7.5 **SOLUTION PROCEDURE**
7.6 **NUMERICAL EXAMPLES**
7.7 **SENSITIVITY ANALYSIS**
7.8 **CONCLUSION**
8. AN INVENTORY MODEL WITH NON-INSTANTANEOUS DETERIORATION, STOCK DEPENDENT DEMAND, PARTIAL BACKLOGGING AND INFLATION OVER A FINITE TIME HORIZON FOR A TWO-WAREHOUSE SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>INTRODUCTION</td>
<td>177</td>
</tr>
<tr>
<td>8.2</td>
<td>PROBLEM DESCRIPTION</td>
<td>179</td>
</tr>
<tr>
<td>8.3</td>
<td>NOTATIONS AND ASSUMPTIONS</td>
<td>179</td>
</tr>
<tr>
<td>8.4</td>
<td>FORMULATION OF THE MODEL</td>
<td>181</td>
</tr>
<tr>
<td>8.5</td>
<td>SOLUTION PROCEDURE</td>
<td>189</td>
</tr>
<tr>
<td>8.6</td>
<td>NUMERICAL EXAMPLES</td>
<td>191</td>
</tr>
<tr>
<td>8.7</td>
<td>SENSITIVITY ANALYSIS</td>
<td>197</td>
</tr>
<tr>
<td>8.8</td>
<td>CONCLUSION</td>
<td>202</td>
</tr>
</tbody>
</table>

9. CONCLUSION 204

BIBLIOGRAPHY 207