TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>1.1 Neurooncology and therapeutics</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2</td>
<td>Neurodegeneration and Neuroprotection</td>
<td>2-4</td>
</tr>
<tr>
<td>1.3</td>
<td>Withania somnifera – Queen of Ayurveda</td>
<td>4-5</td>
</tr>
<tr>
<td>1.4</td>
<td>Rationale of study</td>
<td>5-7</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>8-40</td>
</tr>
<tr>
<td>2.1</td>
<td>Brain tumors and therapeutics</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Withania somnifera and its potential role in integrative oncology</td>
<td>11-12</td>
</tr>
<tr>
<td>2.3</td>
<td>Glutamate induced excitototoxicity and Neuroprotection</td>
<td>13-14</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Glutamate as a Neurotransmitter</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Mechanism of glutamate excitotoxicity</td>
<td>14-16</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Role of glial cells in glutamate transport</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Role of glutamate in neurodegenerative disorders</td>
<td>17-18</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Neuroprotection- mechanism and strategies</td>
<td>18-19</td>
</tr>
<tr>
<td>2.4</td>
<td>Ayurveda and role of Ashwagandha in the Central Nervous System</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Neuroprotective role of Ashwagandha in Neurodegenerative disorders</td>
<td>19-24</td>
</tr>
<tr>
<td>2.5</td>
<td>Molecular markers for neural stress, adhesion and plasticity</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Glial intermediate filament protein and its physiological role</td>
<td>25-26</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Neurofilaments</td>
<td>26-27</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Neural Cell Adhesion Molecule (NCAM) and its polysialylated form (PSA-NCAM)</td>
<td>26-29</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Role of NCAM and PSA-NCAM in pathological conditions</td>
<td>29-30</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Neural adhesion molecule as a potential target for neuroprotection</td>
<td>30-31</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Heat Shock proteins in cell survival and stress</td>
<td>31-32</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>HSP70 mediated neuroprotection in neurodegenerative disorders</td>
<td>32-33</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Modulators of extracellular matrix (ECM)- matrix metalloproteinases (MMPs)</td>
<td>33-34</td>
</tr>
</tbody>
</table>
2.6 Cellular proteins as oncology markers 34
2.6.1 Glial and neuronal interfilament proteins 34-35
2.6.2 NCAM and PSA-NCAM in cancer biology 35-36
2.6.3 HSP70 and mortalin in oncogenesis 36-37
2.6.4 The Cell cycle regulatory protein – Cyclin D1 37
2.6.5 The anti-apoptotic protein Bcl-xl and its cellular functions 37-38
2.6.6 Cell survival and proliferation – role of Akt 38
2.6.7 MMPs in tumor migration and invasion 38-39
2.7 Cell culture based *in vitro* model system for neurooncology and neuroprotection studies 39
2.7.1 C6 glioma cell line 39-40
2.7.2 Human neuroblastoma cell line IMR-32 40

3. MATERIALS AND METHODS 41-55

3.1 Preparation of water extract of Ashwagandha leaves (ASH-WEX) 41
3.2 Cell culture and maintenance 41
3.3 Cell culture and treatments 41
3.3.1 For neurooncology studies 41
3.3.2 For neuroprotection studies 41-42
3.4 Proliferation and Cytotoxicity assays 42
3.5 Trypan blue dye exclusion assay 42-43
3.6 Hoechst 33258 staining 43
3.7 Chemical standardization of ASH-WEX and nature of active components 43
3.8 Immunostaining 43-44
3.9 Protein assay and Western blotting 44-45
3.10 Semi-quantitative RT-PCR 45
3.11 Gelatinase Zymography 45-46
3.12 Wound scratch assay 46
3.13 Cell cycle analysis using Propidium Iodid3 46
3.14 Annexin-FITC apoptosis assay 47
3.15 Data Analysis 47
3.16 Statistical Analysis 47
3.17 PROTOCOLS 48-55
4. RESULTS

4.1 Withania somnifera and Neurooncology

4.1.1 Effect of ASH-WEX on the proliferation of glioma and neuroblastoma cells 56

4.1.2 Possible nature of bioactive components of ASH-WEX 57

4.1.3 ASH-WEX induced differentiation like phenotypes 57

4.1.4 ASH-WEX induced HSPs and senescence marker mortalin expression in glioma and neuroblastoma cells 58

4.1.5 ASH-WEX leads to G0/G1 cell cycle arrest 58-59

4.1.6 ASH-WEX modulated cell cycle, apoptotic and survival markers 59-60

4.1.7 ASH-WEX induced changes in cell adhesion properties of glioma and neuroblastoma 60-62

4.2 Withania somnifera and Neuroexcitotoxicity 62

4.2.1 ASH-WEX attenuated glutamate-induced cytotoxicity 62-63

4.2.2 ASH-WEX abolished glutamate induced changes in the GFAP and NF200 proteins 63-64

4.2.3 ASH-WEX abolished glutamate-induced increase in HSP70 64

4.2.4 ASH-WEX induced NCAM and PSA-NCAM expression to reduce excitotoxic cell death in glutamate challenged cells 64-65

4.2.5 ASH-WEX modulated MMP-2 and 9 expression after glutamate exposure 65-66

5. DISCUSSION

5.1 Role of Ashwagandha in Neurooncology 67

5.1.1 ASH-WEX showed antiproliferative effects and induced differentiated morphology 67-71

5.1.2 ASH-WEX modulated cell cycle, apoptotic and survival markers 71-75

5.1.3 ASH-WEX induced anti-migratory properties 75-79

5.2 Role of Ashwagandha in Neuroexcitotoxicity 79

5.2.1 ASH-WEX attenuates glutamate induced cytotoxicity 80

5.2.2 ASH-WEX normalizes GFAP/NF200 and HSP70 expression in low dose glutamate exposed cells 80-81

5.2.3 ASH-WEX modulated MMP-2 and 9 expression after glutamate exposure 82
5.2.3 ASH-WEX induces NCAM and PSA-NCAM expression to reduce excitotoxic cell death induced by low concentration of glutamate

5.3 Conclusion 86-87

5.4 Future directions 87

6. SUMMARY 88-92

BIBLIOGRAPHY 93-141

Tables 1-2

Figures 1-34

Annexure 1

**