# CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

ABSTRACT

CHAPTER-I: INTRODUCTION 1

CHAPTER-II: ONTOGENY OF THE SILKWORM 9

2.1 Development of embryo 10

2.2 Post embryonic development 10

2.3 Gametogenesis 11

2.3.1 Spermatogenesis 11

2.3.2 Oogenesis 13

CHAPTER-III: SEX DETERMINATION: AN OVERVIEW 14

3.1 Sex determination in lepidoptera 15

3.2 Sex determination in *Drosophila melanogaster* 17

3.3 Sex determination in *Musca domestica* 18

3.4 Sex determination in *Caenorhabditis elegans* 19

3.5 Sex determination in mammals 19

3.6 Dosage compensation 22

3.6.1 Dosage compensation in lepidoptera 22

3.6.2 Dosage compensation in *Drosophila melanogaster* 23

3.6.3 Dosage compensation in *Caenorhabditis elegans* 24
3.6.4 Dosage compensation in mammals

3.7 Sex chromosome evolution

3.7.1 Conformational pathway

3.7.2 Structural pathway

3.8 Sex chromosome evolution in lepidoptera

3.9 Junk DNA and sex determination

CHAPTER-IV MATERIALS AND METHODS

MATERIALS

4.1 Bacterial strains

4.2 Plasmids and phages

4.3 Clones and probes

4.4 Bacterial media, antibiotics and solutions

4.5 Laboratory animals

4.6 Chemicals

METHODS

4.7 Silkworm rearing

4.8 Sterilization

4.9 Siliconization

4.10 Construction of silkworm genomic library

4.10.1 Isolation of high molecular weight DNA from posterior silk gland

4.10.2 Partial restriction enzyme digestion of high molecular weight DNA

4.10.3 Ligation
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.4</td>
<td>Packaging</td>
<td>42</td>
</tr>
<tr>
<td>4.10.5</td>
<td>Preparation of host bacteria</td>
<td>43</td>
</tr>
<tr>
<td>4.10.6</td>
<td>Titering procedure</td>
<td>43</td>
</tr>
<tr>
<td>4.10.7</td>
<td>Amplification of the library</td>
<td>44</td>
</tr>
<tr>
<td>4.11</td>
<td>Preparation of competent cells</td>
<td>45</td>
</tr>
<tr>
<td>4.12</td>
<td>Transformation</td>
<td>45</td>
</tr>
<tr>
<td>4.13</td>
<td>Precipitation of DNA</td>
<td>45</td>
</tr>
<tr>
<td>4.14</td>
<td>Large scale isolation of supercoiled plasmid DNA</td>
<td>46</td>
</tr>
<tr>
<td>4.15</td>
<td>Small scale isolation of plasmid DNA</td>
<td>46</td>
</tr>
<tr>
<td>4.16</td>
<td>Purification of plasmid DNA for sequencing</td>
<td>47</td>
</tr>
<tr>
<td>4.17</td>
<td>Small scale isolation of plasmid DNA for sequencing</td>
<td>47</td>
</tr>
<tr>
<td>4.18</td>
<td>Preparation of cells for electroporation</td>
<td>47</td>
</tr>
<tr>
<td>4.19</td>
<td>Electroporation</td>
<td>48</td>
</tr>
<tr>
<td>4.20</td>
<td>Elution of DNA from agarose gel using freeze thaw method</td>
<td>48</td>
</tr>
<tr>
<td>4.21</td>
<td>Nick translation</td>
<td>49</td>
</tr>
<tr>
<td>4.22</td>
<td>Multiprime labeling</td>
<td>49</td>
</tr>
<tr>
<td>4.23</td>
<td>Measurement of radioactivity in nucleic acids</td>
<td>49</td>
</tr>
<tr>
<td>4.24</td>
<td>DNA Sequencing</td>
<td>50</td>
</tr>
<tr>
<td>4.25</td>
<td>Sequence analysis</td>
<td>51</td>
</tr>
<tr>
<td>4.26</td>
<td>Restriction enzyme digestion of DNA</td>
<td>51</td>
</tr>
<tr>
<td>4.27</td>
<td>Dephosphorylation of vector DNA</td>
<td>51</td>
</tr>
<tr>
<td>4.28</td>
<td>Agarose gel electrophoresis and southern transfer</td>
<td>52</td>
</tr>
</tbody>
</table>
4.29 Vacuum blotting 52
4.30 Southern hybridization 52
4.31 Post hybridization washing and autoradiography 53
4.32 Isolation of total RNA 53
4.32.1 RNA isolation from large amount of tissues 53
4.32.2 Preparation of mRNA 54
4.32.3 Preparation of DNA free RNA 55
4.32.4 Northern blotting and hybridization 55
4.32.5 RNA dot/ slot blot 56
4.33 Construction of TC-T cDNA library 56
4.33.1 Isolation of RNA 56
4.33.2 First strand cDNA synthesis 56
4.33.3 Spin column purification of cDNA 57
4.33.4 Oligo dG-tailing 57
4.33.5 PCR amplification with TC and T-primers 57
4.33.6 Restriction digestion of the cDNA product and vector 58
4.33.7 Ligation 59
4.34 Detection of RNA by fluorescence in situ hybridization 59
4.34.1 Subbed slide preparation 59
4.34.2 Tissue fixation 59
4.34.3 In situ hybridization 60
4.34.4 Detection 60
4.35 Chromosome preparation from silkworm embryos 61
CHAPTER-V: ISOLATION AND CHARACTERIZATION OF Bkm2(8) POSITIVE SILKWORM GENOMIC CLONES

Results 63

5.1 Strategy 63

5.2 Screening of silkworm genomic library with Bkm2(8) 63

5.3 Analysis of Bkm2(8) positive silkworm genomic clones 64

5.4 Sobcloning and sequencing of Bkm2(8) positive silkworm 64 genomic clones

5.5 \textit{In silico} analysis of 1769bp Bm(GATA)$_n$ 65

5.6 \textit{In silico} analysis of 1228bp Bm(GATA)$_n$ flanking sequence 66

5.7 Characterization of Bm(GATA)$_n$Subclone 67

5.8 Characterization of (GATA)$_n$ microsatellite loci 68

5.9 Characterization of (GAGT)$_n$ microsatellite loci 68

Discussion 69

CHAPTER-VI: ISOLATION AND CHARACTERIZATION OF GENOMIC AND cDNA CLONES OF BmP42

Results 73

6.1 Objective 73

6.2 Screening of the library 73

6.3 Characterization of 4.3.1 74
6.4 Characterization of 7.1.1 and 19.1.1 74
6.5 Sequencing of clone 4.3.1 75
6.6 Expression of $BmP\phi 2$ in different silkworm tissues 76
6.7 RNA FISH 77
6.8 Construction of cDNA library from 1st instar larval stage 78
6.8.1 Screening of cDNA library 78
6.8.2 Characterization of cDNA clone A2 78
6.8.3 Characterization of cDNA clone A25.1 79
6.9 In silico analysis of $BmP\phi 2$ genomic clone 79
6.10 Analysis of potential open reading frames in the putative $Bmp\phi 2$ cDNA 81
6.11 Chromosomal localization by fluorescence in situ hybridization. 82

DISCUSSION 84

REFERENCES 96