Preface

The present thesis entitled “Study of palaeoenvironment of Early Holocene Period in the Northern Vindhys and the Middle Ganga Plains: Archaeobotanical Approach” deals with paleoclimatic reconstruction of Northern Vindhys and middle Ganga plain using phytolith as a main proxy along with some additional proxies. The sediments from three archaeological sites were studied. The thesis is divided into five chapters.

The first chapter comprises of general introduction and archeological importance of the study area, study of palaeoenvironment and required tools, general introduction of proxies used, review of literature and objectives.

The second chapter throws light on methods used to extract studied proxies like phytolith, diatom, thecamobians and sponge spicules. The carbon isotope measurement calibration of radiocarbon dates and statistical analysis is also described in this chapter.

Chapter three describes results, part I deals with phytolith results from Tokwa archaeological site and part II deals with phytolith and carbon isotope analysis of Hetapatti archaeological site. While part three provide results from Phytolith, diatom, thecamoebian and sponge spicule analysis from Karela Lake, adjacent to Hulaskhera archaeological site.

In chapter four interpretations and discussion of results has been placed considering palaeoclimatic inferences from each studied site. The first part deals with interpretation of results from Tokwa, Hetapatti and Karela Jheel. The latter part deals with discussion and reconstruction of palaeoclimate with emphasis of early Holocene climate.
Chapter five concludes the findings of the present study along with palaeoclimatic reconstruction of early Holocene period in Northern Vindhyas and Middle Ganga Plain.

The thesis ends with the last section, in which various references have been cited, consulted during the present study.
Contents

Acknowledgement i-iii
Preface iv-v

Chapter-1 Introduction 1-34

1.1 General Introduction 1
1.2 Archeological importance of Ganga Plain and the adjoining area 2
1.3 Study area
 1.3.1 Climate 6
 1.3.2 Flora 6
 1.3.3 Fauna 9
 1.3.4 Geomorphology 11
 1.3.5 Subsurface Geology 14
 1.3.6 River system 15
1.4 Study of Palaeoenvironment and its importance 17
 1.4.1 Tools required for past climate reconstruction 17
1.5 Present work 18
 1.5.1 Proxies used 19
 1.5.2 Geochronometer used 24
1.6 Work done (Review of literature)
 1.6.1 History of Phytolith research and major works 25
 1.6.2 Work done in India 30
1.7 Objectives 34

Chapter 2 - Material and Methods 35-41

2.1 Collection of samples 35
2.2 Chronology
 2.2.1 AMS radiocarbon dating 36
 2.2.2 Radiocarbon dating 37
 2.2.3 Age depth modeling 37
2.3 Carbon Isotope 37
2.4 Extraction and study of biological proxies 38
2.5 Statistical analysis 40

Chapter-3 Results 42-96

Part I 42-59

3.1 Tokwa 42
3.1.1 Study area 42
3.1.2 Brief Archeology of the site 43
3.1.3 Chronology of the site 46
3.1.4 Analysis of plant micro remains (Phytolith) 49

Part II 59-78

3.2 Hetapatti 59
 3.2.1 Study area 59
 3.2.2 Brief Archeology of the site 60
 3.2.3 Chronology of the site 63
 3.2.4 Analysis of plant micro remains. 67
 3.2.5 Isotope analysis 72

Part III 79-96

3.3 Karela Jheel 79
 3.3.1 Study area 79
 3.3.2 Brief Archeology of the site 80
 3.3.3 Chronology of the site 83
 3.3.4 Analysis of various proxies 85
 3.3.4.1 Phytolith analysis 85
 3.3.4.2 Diatom Analysis 88
 3.3.4.3 Thecamoebians 90
 3.3.4.4 Sponge spicule analysis 91
 3.3.5 Ordination analysis 92

Chapter -4 Discussion 97-116

4.1 Interpretation 97
 4.1.1 Tokwa (northern Vindhyas) 97
 4.1.2 Hetapatti (Middle Ganga Plain) 100
 4.1.3 Karela Lake (Middle Ganga Plain) 105
4.2 Discussion 112
 4.2.1 Origin of Phytolith in study region 112
 4.2.3 Climate culture relationship 113
 4.4.4. Discussion 114

Chapter -5 Conclusion 117-118

5.1 Concluding remarks 117
5.2 Recommendations for future work 118

References 119-145

List of Papers published 146

Published Paper
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of studied sites</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic geomorphic map of the Ganga Plain showing regional geomorphic</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>surfaces of the Ganga Plain</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Diagram shows Late Pleistocene-Holocene climatic, sea level changes and</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>proposed timing of formation of regional geomorphic surfaces in the Ganga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>A) Map of Ganga Plain showing major subsurface basement features and</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>thickness of sediments (B) Schematic map of tectonic setting of the Ganga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>Location and Geomorphological map of study location</td>
<td>44</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Age depth model for Tokwa site based on C14 dates</td>
<td>47</td>
</tr>
<tr>
<td>3.1.3</td>
<td>View of Tokwa site from northern side</td>
<td>48</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Position of trench H-8 and H-9 at Tokwa 1</td>
<td>48</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Phytolith assemblage along with lithological sequence of trench H-8,</td>
<td>51</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Tokwa a) The humidity–aridity index (IPh%) (b) Total GSSCs percentage in</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Tokwa</td>
<td></td>
</tr>
<tr>
<td>3.1.7</td>
<td>Correlation Graph showing same input path of double peak rice glume</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>phytoliths and scooped bilobate phytolith from Tokwa</td>
<td></td>
</tr>
<tr>
<td>3.1.8</td>
<td>Various grass phytoliths obtained from Tokwa</td>
<td>56</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Various phytolith morphotypes from Tokwa</td>
<td>57</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Various phytolith morphotypes and other microremains from Tokwa</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Location and Geomorphological map of study location</td>
<td>61</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Bayesian age-depth model of the Hetapatti sequence.</td>
<td>65</td>
</tr>
<tr>
<td>3.2.3</td>
<td>View of HPT II mound and excavated trenches A1 and A4</td>
<td>66</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Combined Lithological details for whole sequence of mound HPT-II</td>
<td>66</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Phytolith assemblage of whole sequence from HPT II mound</td>
<td>68</td>
</tr>
</tbody>
</table>
3.2.6 (a) The humidity–aridity index (IPh%) (b) Total GSSCs percentage from HPT II sequence

3.2.7 Graphical representation of C4 –C3 abundance in HPT-II sequence.

3.2.8 The plot between TOC and TN values in HPT –II sequence, showing a positive relationship.

3.2.9 Triplot showing the results from RDA analyses among the 4 parameters in Hetapatti

3.2.10 Various phytoliths obtained from HPT-II

3.2.11 Various grass phytoliths from HPT-II

3.3.1 Location map of Karela Jheel

3.3.2 View of dried lake bed showing sampling site

3.3.3 Lithological details of the sequence with radiocarbon dates

3.3.4 The Bayesian age-depth model of the Karela Jheel

3.3.5 Graphical representation of all the proxy data from the Karela Jheel (Lake) sequence

3.3.6 (a) Humidity/Aridity index (Iph %) (b) Percentage of Grass silica short cells (GSSCs)

3.3.7 Triplot showing the results from principal component analyses (PCA) of a) thecamoebian, b) phytolith, c) diatom and d) sponge spicules

3.3.8 Various phytolith morphotypes and sponge spicules obtained from Karela Lake sequence

3.3.9 Types of diatoms obtained from Karela lake

3.3.10 Types of thecamoebians obtained from Karela Lake

4.1 Schematic representation of climatic fluctuations in and around Karela Lake

4.2 Diagrammatic comparison of climatic inferences obtained from all studied sites, the shaded area in pink color represent Early Holocene period.
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical annual and perennial grasses found throughout the Gangatic plains</td>
<td>7-8</td>
</tr>
<tr>
<td>1.2</td>
<td>Inventory of Faunal Diversity of Uttar Pradesh, published by Uttar Pradesh State Biodiversity Board, Lucknow</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Hydrological characteristics of the rivers of Gangetic plains</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Radiocarbon dates obtained by charcoal samples from trench H-8</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Radiocarbon dates obtained by bulk samples from trench A1 and WA4, from HPT-II</td>
<td>63</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Modelled age of palaeoecological/palaeoclimatic zone boundaries.</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The value of δ^{13}C, TOC, TN and C4- C3 abundance in HPT-II sequence</td>
<td>74</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Radiocarbon dates from the Karela Jheel trench sequence and their calibration to calendar ages</td>
<td>83</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Modelled age of palaeoecological/palaeoclimatic zone boundaries</td>
<td>83</td>
</tr>
</tbody>
</table>