Chapter 5
SYMMETRIC SKEW 4-DERIVATIONS AND REVERSE DERIVATIONS ON SEMIPRIME RINGS
In chapter 5, we proved some results on symmetric skew 4-derivations and symmetric skew 4-reverse derivations in semiprime rings. In section 5.1, we introduce the notation of symmetric skew 4-derivation of semiprime ring and we consider R be a non-commutative 2, 3-torsion free semiprime ring, I be a non-zero two sided ideal of R, α be an automorphism of R, and $D: R^4 \to R$ be a symmetric skew 4-derivation associated with the automorphism α. If f is trace of D such that $[f(x), \alpha(x)] \in Z$, for all $x \in I$, then $[f(x), \alpha(x)] = 0$, for all $x \in I$. In section 5.2, we introduce the notation of symmetric skew 4-reverse derivation of semiprime ring and we consider R be a non-commutative 2,3-torsion free semiprime ring, I be a non-zero two sided ideal of R, α be an anti-automorphism of R, and $D: R^4 \to R$ be a symmetric skew 4-reverse derivation associated with the anti-automorphism α. Suppose that the trace function f is commuting on I and $[f(y), \alpha(y)] \in Z$, for all $y \in I$, then $[f(y), \alpha(y)] = 0$, for all $y \in I$.
5.1 Symmetric Skew 4-Derivations on Semiprime Rings:

In 1957, the study of centralizing and commuting mappings on a prime rings was initiated by the result of Posner E.C. [32] which states that the existence of a non-zero centralizing derivation on a prime ring implies that the ring has to be commutative. Further Vukman [36,37] extended above result for bi derivations. Recently Jung and park [25] considered permuting 3-derivations on prime and semiprime rings and obtained the following: Let R be a non-commutative 3-torsion free semiprime ring and let I be a non-zero two sided ideal of R. Suppose that there exists a permuting 3-derivation $D: R^3 \to R$ such that f is centralizing on I then f is commuting on I. Fosner.A [1] extended the above results in symmetric skew 3-derivations with prime rings and semiprime rings. Recently Faiza Shujat, Abuzaid Ansari [16] studied some results in symmetric skew 4-derivations in prime rings. In this section we proved that Symmetric skew 4-derivations in semiprime rings.

Throughout this section, R will be represent a ring with a center Z and α be an automorphism of R. Let $n \geq 2$ be an integer. A ring R is said to be n-torsion free if for $x \in R$, $nx = 0$ implies $x = 0$. For all $x, y \in R$ the symbol $[x, y]$ will denote the commutator $xy - yx$. We make extensive use of basic commutator identities $[xy, z] = [x, z]y + x[y, z]$ and $[x, yz] = [x, y]z + y[x, z]$. Recall that a ring R is semi prime if $xRx = 0$ implies that $x = 0$. An additive map $d: R \to R$ is called derivation if $d(xy) = d(x)y + xd(y)$, for all $x, y \in R$, and it is called a skew derivation (α-derivation) of R associated with the automorphism α if $d(xy) = d(x)y + \alpha(x)d(y)$ for all $x, y \in R$, associated with automorphism α if $d(xy) = xd(y) + \alpha(y)d(x)$ for all $x, y \in R$.

78
Before starting our main theorem, let us give some basic definitions and well-known results which we will need in our further investigation.

Let D be a symmetric 4-additive map of R, then obviously

\[D(-p, q, r, s) = -D(p, q, r, s), \text{ for all } p, q, r, s \in R \quad (5.1.1) \]

Namely, for all $y, z \in R$, the map $D(\ldots, y, z) : R \to R$ is an endomorphism of the additive group of R. The map $f : R \to R$ defined by $f(x) = D(x, x, x, x)$, $x \in R$ is called trace of D. Note that f is not additive on R. But for all $x, y \in R$, we have

\[f(x + y) = [f(x) + 4D(x, x, x, y) + 6D(x, x, x, y) + 4D(x, y, y, y) + f(y)] \]

Recall that by equation (5.1.1), f is even function.

More precisely, for all $p, q, r, s, u, v, w, x \in R$, we have

\[D(pu, q, r, s) = D(p, q, r, s)u + \alpha(p)D(u, q, r, s), \]
\[D(p, qv, r, s) = D(p, q, r, s)v + \alpha(q)D(p, v, r, s), \]
\[D(p, q, rw, s) = D(p, q, r, s)w + \alpha(r)D(p, q, w, s), \]
\[D(p, q, r, sx) = D(p, q, r, s)x + \alpha(s)D(p, q, r, x). \]

Of course, if D is symmetric, then the above four relations are equivalent to each other.

Lemma 5.1.1: Let R be a prime ring and $a, b \in R$. If $a[x, b] = 0$, for all $x \in R$, then either $a = 0$ or $b \in Z$.

Proof: Note that $0 = a[xy, b] = ax[y, b] + a[x, b]y = ax[y, b]$, for all $x, y \in R$.

Thus $aR[y, b] = 0, y \in R$, and, since R is prime, either $a = 0$ or $b \in Z$.

79
Theorem 5.1.1: Let R be a 2,3 -torsion free non commutative semiprime ring and I be a nonzero ideal of R. Suppose α is an automorphism of R and $D: R^4 \rightarrow R$ is a symmetric skew 4- derivation associated with α. If f is trace of D such that $[f(x), \alpha(x)] \in Z$, for all $x \in I$, then $[f(x), \alpha(x)] = 0$, for all $x \in I$.

Proof: Let $[f(x), \alpha(x)] \in Z$, for all $x \in I$.

(5.1.2)

Linearization of (5.1.2) yields that, we have

$[f(x + y), \alpha(x + y)] \in Z \ [f(x + y), \alpha(x)] + [f(x + y), \alpha(y)] \in Z$

By skew 4- derivation, we have

$f(x + y) = [f(x) + 4D(x,x,y,y) + 6D(x,x,y,y) + 4D(x,y,y,y) + f(y)]$

$[f(x), \alpha(x)] + 4[D(x,x,y,y), \alpha(x)] + 6[D(x,x,y,y), \alpha(x)] +$

$4[D(x,y,y,y), \alpha(x)] + [f(y), \alpha(x)] + [f(x), \alpha(y)] + 4[D(x,x,y,y), \alpha(y)] +$

$6[D(x,x,y,y), \alpha(y)] + 4[D(x,y,y,y), \alpha(y)] + [f(y), \alpha(y)] \in Z$, for all $x \in I$.

(5.1.3)

From (5.1.2) & (5.1.3), we get

$4[D(x,x,y,y), \alpha(x)] + 6[D(x,x,y,y), \alpha(x)] + 4[D(x,y,y,y), \alpha(x)] +$

$[f(y), \alpha(x)] + [f(x), \alpha(y)] + 4[D(x,x,x,y), \alpha(y)] + 6[D(x,x,y,y), \alpha(y)] +$

$4[D(x,y,y,y), \alpha(y)] \in Z$, for all $x \in I$.

(5.1.4)

Replacing y by $-y$ in (5.1.4), we find

$-4[D(x,x,y,y), \alpha(x)] + 6[D(x,x,y,y), \alpha(x)] - 4[D(x,y,y,y), \alpha(x)] +$

$[f(y), \alpha(x)] - [f(x), \alpha(y)] + 4[D(x,x,x,y), \alpha(y)] - 6[D(x,x,y,y), \alpha(y)] +$

$4[D(x,y,y,y), \alpha(y)] \in Z$, for all $x \in I$.

(5.1.5)
Comparing (5.1.4) and (5.1.5) and using 2-torsion freeness of R, we have

$$4[D(x, x, x, y), \alpha(x)] + 4[D(x, y, y, y), \alpha(x)] + [f(x), \alpha(y)] +$$

$$6[D(x, x, y, y), \alpha(y)] \in Z, \text{ for all } x \in I. \tag{5.1.6}$$

Substitute $y + z$ for y in (5.1.6) and use (5.1.6), we get

$$4[D(x, x, y + z), \alpha(x)] + 4[D(x, y + z, y + z, y + z), \alpha(x)] + [f(x), \alpha(y + z)]$$

$$+ 6[D(x, x, y + z, y + z), \alpha(y + z)] \in Z$$

$$4[D(x, x, y), \alpha(x)] + 4[D(x, x, z), \alpha(x)] + 4[D(x, y, y), \alpha(x)]$$

$$+ 4[D(x, y, y, z), \alpha(x)] + 4[D(x, y, z, y), \alpha(x)]$$

$$+ 4[D(x, z, y, z), \alpha(x)] + 4[D(x, z, z, y), \alpha(x)]$$

$$+ 4[D(x, z, z, z), \alpha(x)] + [f(x), \alpha(y)] + [f(x), \alpha(z)]$$

$$+ 6[D(x, x, y), \alpha(y)] + 6[D(x, x, y, z), \alpha(y)]$$

$$+ 6[D(x, x, z, y), \alpha(y)] + 6[D(x, x, z, z), \alpha(y)]$$

$$+ 6[D(x, x, y, y), \alpha(z)] + 6[D(x, x, z, z), \alpha(z)] \in Z$$

$$4[D(x, y, y, z), \alpha(x)] + 4[D(x, y, z, y), \alpha(x)] + 4[D(x, y, z, z), \alpha(x)]$$

$$+ 4[D(x, z, y, y), \alpha(y)] + 4[D(x, z, z, y), \alpha(y)]$$

$$+ 4[D(x, z, z, z), \alpha(y)] + 6[D(x, x, y, z), \alpha(y)]$$

$$+ 6[D(x, x, y, y), \alpha(z)] + 6[D(x, x, y, z), \alpha(z)]$$

$$+ 6[D(x, x, z, y), \alpha(z)] \in Z$$
Replacing z in $-z$ in (5.1.7) and compare with (5.1.7), we obtain

\[-12[D(x, y, y, z), \alpha(x)] + 12[D(x, y, z, z), \alpha(x)] - 12[D(x, x, z, z), \alpha(y)]
+ 6[D(z, x, z, z), \alpha(y)] - 6[D(x, x, y, y), \alpha(z)]
+ 12[D(x, x, y, z), \alpha(z)] \in Z\]

\[2(12[D(x, z, y, y), \alpha(x)] + 12[D(x, x, y, z), \alpha(y)] + 6[D(x, x, y, y), \alpha(z)]) \in Z\]

Using of two torsion free ring, we have

\[12[D(x, z, y, y), \alpha(x)] + 12[D(x, x, y, z), \alpha(y)] + 6[D(x, x, y, y), \alpha(z)] \in Z,\]

for all $x, y, z \in I$. \hfill (5.1.8)

Substitute $y + u$ for y in (5.1.8) and use (5.1.8) we get

\[12[D(x, z, y + u, y + u), \alpha(x)] + 12[D(x, x, y + u, z), \alpha(y + u)]
+ 6[D(x, x, y + u, y + u), \alpha(z)] \in Z\]

\[12[D(x, z, y, y), \alpha(x)] + 12[D(x, z, y, u), \alpha(x)] + 12[D(x, z, u, y), \alpha(x)]
+ 12[D(x, z, u, u), \alpha(x)] + 12[D(x, x, y, z), \alpha(y)]
+ 12[D(x, x, y, u), \alpha(y)] + 12[D(x, x, u, z), \alpha(u)]
+ 12[D(x, x, u, z), \alpha(u)] + 6[D(x, x, y, y), \alpha(z)]
+ 6[D(x, x, y, u), \alpha(z)] + 6[D(x, x, u, y), \alpha(z)]
+ 6[D(x, x, u, u), \alpha(z)] \in Z\]
$24[D(x, y, u, \alpha(x))] + 12[D(x, y, z, \alpha(u))] + 12[D(x, u, z, \alpha(y))] + 12[D(x, x, y, \alpha(z))] \in Z$, for all $x, y, z \in I$. (5.1.9)

Since R is 2 and 3-torsion free and replacing y, u by x in (5.1.9), we have

$24[D(x, z, x, \alpha(x))] + 12[D(x, x, z, \alpha(z))] + 12[D(x, x, x, \alpha(z))] \in Z$

$48[D(x, x, x, z, \alpha(x))] + 12[D(x, x, x, z, \alpha(z))] \in Z$

$4[D(x, x, x, z, \alpha(x))] + [f(x), \alpha(z)] \in Z$, for all $x, z \in I$. (5.1.10)

Again replaced z by xz in (5.1.10) and using (5.1.10) we obtain

$4[D(x, x, x, xz, \alpha(x))] + [f(x), \alpha(xz)] \in Z$, for all $x, z \in I$.

$4[D(x, x, x, xz, \alpha(x))] + [f(x), \alpha(x)\alpha(z)] \in Z$, for all $x, z \in I$.

$4[D(x, x, x, xz + \alpha(x)D(x, x, x, z), \alpha(x)] + [f(x), \alpha(x)]\alpha(z) + \alpha(x)[f(x), \alpha(z)] \in Z$, for all $x, z \in I$.

$4f(x)[x, \alpha(x)] + 4[f(x), \alpha(x)]x + 4\alpha(x)[D(x, x, x, z), \alpha(x)] + [f(x), \alpha(x)]\alpha(z) + \alpha(x)[f(x), \alpha(z)] \in Z$, for all $x, z \in I$.

$4f(x)[x, \alpha(x)] + [f(x), \alpha(z)] + 4[D(x, x, x, z), \alpha(z)] + (\alpha(z) + 4z)[f(x), \alpha(x)] + 4f(x)[z, \alpha(x)] \in Z$, for all $x, z \in I$. (5.1.11)

Therefore, from (5.1.11), we get

$[\alpha(x)([f(x), \alpha(z)] + 4[D(x, x, x, z), \alpha(x)]) + \alpha(x)] + [(\alpha(z) + 4z)[f(x), \alpha(x)], \alpha(x)] + 4f(x)[x, \alpha(x)], \alpha(x)] = 0$, for all $x, z \in I$. (5.1.12)
\[\alpha(x)[(f(x), \alpha(z)] + 4[D(x, x, x, z), \alpha(x)], \alpha(x)] + \\
(\alpha(z) + 4z)[(f(x), \alpha(x), \alpha(x)] + [\alpha(z) + 4z, \alpha(x)](f(x), \alpha(x)] + \\
4f(x)[z, \alpha(x)], \alpha(x)] + 4[f(x), \alpha(x)][z, \alpha(x)] = 0, \text{ for all } x, z \in I.
\]
\[\alpha(x)[(f(x), \alpha(z)], \alpha(x)] + 4\alpha(x)[(D(x, x, x, z), \alpha(x)], \alpha(x)] + (\alpha(z) + \\
4z)[(f(x), \alpha(x), \alpha(x)] + [\alpha(z), \alpha(x)](f(x), \alpha(x)] + 4[z, \alpha(x)](f(x), \alpha(x)] + \\
4f(x)[z, \alpha(x)], \alpha(x)] + 4[f(x), \alpha(x)][z, \alpha(x)] = 0, \text{ for all } x, z \in I.
\]
\[((\alpha(z) + 4z), \alpha(x)](f(x), \alpha(x)] + 4f(x)[z, \alpha(x)], \alpha(x)] = 0, \text{ for all } x, z \in I.
\]

(5.1.13)

Replacing \(z \) by \(f(x)[f(x), \alpha(x)] \) in (5.1.13), we get

\[[(\alpha(f(x)[f(x), \alpha(x)])) + 8f(x)[(f(x), \alpha(x)], \alpha(x)](f(x), \alpha(x)] + \\
4f(x)[(f(x)[f(x), \alpha(x)], \alpha(x)], \alpha(x)] = 0, \text{ for all } x \in I.
\]
\[[(\alpha(f(x))\alpha([f(x), \alpha(x)], \alpha(x)])(f(x), \alpha(x)] + \\
8[f(x)[f(x), \alpha(x)], \alpha(x)](f(x), \alpha(x)] + 4f(x)[(f(x), \alpha(x)](f(x), \alpha(x)] + \\
f(x)[(f(x), \alpha(x)], \alpha(x)](f(x), \alpha(x)] = 0, \text{ for all } x \in I.
\]
\[\alpha(f(x))[\alpha([f(x), \alpha(x)], \alpha(x)](f(x), \alpha(x)] + \\
[\alpha(f(x)), \alpha(x)]\alpha([f(x), \alpha(x)](f(x), \alpha(x)] + \\
8f(x)[(f(x), \alpha(x)], \alpha(x)](f(x), \alpha(x)] + 8[f(x), \alpha(x)](f(x), \alpha(x)](f(x), \alpha(x)] + \\
4f(x)[(f(x), \alpha(x))(f(x), \alpha(x)], \alpha(x)] = 0, \text{ for all } x \in I.
\]
Chapter 5

\[\alpha(f(x), \alpha(x)) \alpha([f(x), \alpha(x)]) [f(x), \alpha(x)] + \]

\[
8[f(x), \alpha(x)][f(x), \alpha(x)][f(x), \alpha(x)] + 4f(x)[f(x), \alpha(x)][f(x), \alpha(x)] + \\
4f(x)[f(x), \alpha(x)], \alpha(x)][f(x), \alpha(x)] = 0, \text{ for all } x \in I. \\
\]

\[
\alpha(f(x), \alpha(x)][f(x), \alpha(x)][f(x), \alpha(x)] + \\
8[f(x), \alpha(x)][f(x), \alpha(x)][f(x), \alpha(x)] = 0, \text{ for all } x \in I. \\
\]

\[
\alpha(f(x), \alpha(x)][f(x), \alpha(x)][f(x), \alpha(x)] + 8[f(x), \alpha(x)]^3 = 0, \text{ for all } x \in I. \\
\]

Since \(f\) is commutative on \(I\) and we have 2, 3-torsion freeness,

\[2[f(x), \alpha(x)]^3 = 0. \]

It follows that \((2[f(x), \alpha(x)]^2) R 2([f(x), \alpha(x)]^3) = 0. \]

Since \(R\) is semiprime, we have

\[2[f(x), \alpha(x)]^2 = 0, \text{ for all } x \in I. \] \hspace{1cm} (5.1.14)

On the other hand, taking \(z = x^2\) in equation (5.1.10), we get

\[4[D(x, x, x, x^2), \alpha(x)] + [f(x), \alpha(x^2)] \in Z, \text{ for all } x \in I. \]

\[4[D(x, x, x, x) x + \alpha(x)D(x, x, x, x), \alpha(x)] + [f(x), \alpha(x)\alpha(x)] \in Z, \text{ for all } x \in I. \]

\[4[f(x) x + \alpha(x)f(x), \alpha(x)] + \alpha(x)[f(x), \alpha(x)] + [f(x), \alpha(x)]\alpha(x) \in Z, \text{ for all } x \in I. \]

\[4[f(x) x, \alpha(x)] + 4[\alpha(x)f(x), \alpha(x)] + 2\alpha(x)f(x), \alpha(x)] \in Z, \text{ for all } x \in I. \]

\[4f(x)[x, \alpha(x)] + 4[f(x), \alpha(x)] x + 4\alpha(x)[f(x), \alpha(x)] + 4[\alpha(x), \alpha(x)] f(x) + 2\alpha(x) f(x), \alpha(x)] \in Z, \text{ for all } x \in I. \]
\[6a(x)[f(x),\alpha(x)] + 4x[f(x),\alpha(x)] + 4f(x)[x,\alpha(x)] \in Z, \text{ for all } x \in I. \quad (5.1.15) \]

Therefore, from equation (5.1.15), we get

\[[f(x), 6a(x)[f(x),\alpha(x)] + 4x[f(x),\alpha(x)] + 4f(x)[x,\alpha(x)]] = 0, \text{ for all } x \in I. \]

\[[f(x), 6a(x)[f(x),\alpha(x)]] + [f(x), 4x[f(x),\alpha(x)]] + [f(x), 4f(x)[x,\alpha(x)]] = 0. \]

\[6a(x)[f(x),[f(x),\alpha(x)]] + 6[f(x),\alpha(x)][f(x),\alpha(x)] + 4x[f(x),[f(x),\alpha(x)]] + 4[f(x),x][f(x),\alpha(x)] + 4f(x)[f(x),[x,\alpha(x)]] \]
\[+ 4[f(x),f(x)][x,\alpha(x)] = 0. \]

\[6[f(x),\alpha(x)]^2 + 4f(x)[f(x),[x,\alpha(x)]] = 0, \text{ for all } x \in I. \]

\[6[f(x),\alpha(x)]^2 + 4f(x)[f(x),[x,\alpha(x)]] = 0, \text{ for all } x \in I. \quad (5.1.16) \]

Since \(f \) is commutative and using equation (5.1.16), we get

\[6[f(x),\alpha(x)]^2 = 0, \text{ for all } x \in I. \]

We have 2- torsion freeness, we get

\[3[f(x),\alpha(x)]^2 = 0, \text{ for all } x \in I. \quad (5.1.17) \]

Comparing (5.1.14) and (5.1.17) and we have 2- torsion freeness, we get

\[[f(x),\alpha(x)]^2 = 0, \text{ for all } x \in I. \]

Note that zero is the only nilpotent element in the center of semiprime ring.

Thus, \([f(x),\alpha(x)] = 0, \text{ for all } x \in I.\]

This completes the proof.
Therefore, from equation (5.1.15), we get
\[[f(x), 6\alpha(x)][f(x), \alpha(x)] + 4x[f(x), \alpha(x)] + 4f(x)[x, \alpha(x)] = 0, \text{ for all } x \in I. \]

Comparing (5.1.14) and (5.1.17) and we have 2- torsion freeness, we get
\[[f(x), \alpha(x)]^2 = 0, \text{ for all } x \in I. \] (5.1.17)

Note that zero is the only nilpotent element in the center of semiprime ring.

Thus, \([f(x), \alpha(x)] = 0, \text{ for all } x \in I.\)

This completes the proof.
5.2 Symmetric Skew 4-Reverse Derivations on Semiprime Rings:

Bresar and Vukman [14] have introduced the notation of a reverse derivations and Samman and Alyamani [34] have studied some properties of semi prime rings with reverse derivations. The study of centralizing and commuting mappings on prime rings was initiated by the result of Posner [32] which states that the existence of a nonzero centralizing derivation on a prime ring implies that the ring has to be commutative. Vukman [36,37] investigated symmetric bi derivation on prime and semi prime rings in connection with centralizing mappings. Fosner,A [1] have studied some results in symmetric skew 3-derivations with prime rings and semiprime rings. Recently Faiza Shujat, Abuzaid Ansari [16] studied some results in symmetric skew 4-derivations in prime rings. Jaya Subba Reddy.C [22] have studied some results in symmetric skew 3-reverse derivations with semiprime rings. Motivated by the above work, in this section we proved that under certain conditions of a semiprime ring with a nonzero symmetric skew 4 - reverse derivations has to be commutative.

Throughout the section, R will represent a ring with a center Z and α an anti - automorphism of R. Let n ≥ 2 be an integer. A ring R is said to be n-torsion free if for x ∈ R, nx = 0 implies x = 0. For all x, y ∈ R the symbol [x, y] will denote the commutator xy − yx. we make extensive use of basic commutator identities [xy, z] = [x, z]y + x[y, z] and [x, yz] = [x, y]z + y[x, z]. Recall that a ring R is semiprime if xRx = 0 implies that x = 0. An additive map d: R → R is called derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R, and it is called a skew derivation (α - derivation) of R associated with the anti-automorphism α if d(xy) =
\[d(x)y + \alpha(x)d(y), \text{ for all } x, y \in R. \] An additive map \(d: R \to R \) is called reverse derivation if \(d(xy) = xd(y) + yd(x), \) for all \(x, y \in R, \) and it is called a skew reverse derivation of \(R \) associated with anti-automorphism \(\alpha \) if \(d(xy) = xd(y) + \alpha(y)d(x), \) for all \(x, y \in R. \)

Before starting our main theorem, let us gives some basic definitions and well known results which we will need in our further investigation.

Let \(D \) be a symmetric 4-additive map of \(R, \) then obviously

\[D(-p, q, r, s) = -D(p, q, r, s), \text{ for all } p, q, r, s \in R. \] (5.2.1)

Namely, for all \(y, z \in R, \) the map \(D(. , . , y, z): R \to R \) is endomorphism of the additive group of \(R. \)

The map \(f: R \to R \) defined by \(f(x) = D(x, x, x, x), x \in R \) is called trace of \(D. \)

Note that \(f \) is not additive on \(R. \) But for all \(x, y \in R, \) we have

\[f(x + y) = [f(x) + 4D(x, x, x, y) + 6D(x, x, y, y) + 4D(x, y, y, y) + f(y)] \]

Recall that by (5.2.1), \(f \) is even function

More precisely, for all \(p, q, r, s, u, v, w, x \in R, \) we have

\[D(pu, q, r, s) = pD(u, q, r, s) + \alpha(u)D(p, q, r, s), \]
\[D(p, qv, r, s) = qD(p, v, r, s) + \alpha(v)D(p, q, r, s), \]
\[D(p, q, rw, s) = rD(p, q, w, s) + \alpha(w)D(p, q, r, s), \]
\[D(p, q, r, sx) = sD(p, q, r, x) + \alpha(x)D(p, q, r, s). \]
Of course, if \(D \) is symmetric, then the above four relations are equivalent to each other.

Lemma 5.2.1: Let \(R \) be a prime ring and \(a, b \in R \). If \(a[x, b] = 0 \) for all \(x \in R \), then either \(a = 0 \) or \(b \in Z \).

Proof: Note that

\[
0 = a[xy, b] = ax[y, b] + a[x, b]y = ax[y, b] \quad \text{for all } x, y \in R.
\]

Thus \(aR[y, b] = 0 \), \(y \in R \), and, since \(R \) is prime, either \(a = 0 \) or \(b \in Z \).

Theorem 5.2.1: Let \(R \) be a \(2,3 \)-torsion free non commutative semiprime ring and \(I \) be a nonzero ideal of \(R \). Suppose \(\alpha \) is an anti automorphism of \(R \) and \(D: R^4 \to R \) is a symmetric skew 4-reverse derivation associated with \(\alpha \). Suppose that the trace function \(f \) is commuting on \(I \) and \([f(y), \alpha(y)] \in Z \), for all \(y \in I \), then \([f(y), \alpha(y)] = 0 \), for all \(y \in I \).

Proof: Let \([f(y), \alpha(y)] \in Z \), for all \(y \in I \).

Linearization of (5.2.2) yields that

\[
[f(x + y), \alpha(x + y)] \in Z, \quad \text{for all } x, y \in I.
\]

\[
[f(x + y), \alpha(x) + \alpha(y)] \in Z
\]

By skew 4-derivation, we have

\[
(f(x + y), \alpha(x) + \alpha(y)) = [f(x) + 4D(x, x, x, y) + 6D(x, x, y, y) + 4D(x, y, y, y) + f(y), \alpha(x) + \alpha(y)],
\]

for all \(x, y \in I \).
\[f(x), a(x) \] + 4[D(x, x, y), a(x)] + 6[D(x, x, y), a(x)] + \\
4[D(x, y, y, a(x)] + [f(y), a(x)] + [f(x), a(y)] + 4[D(x, x, y), a(y)] + \\
6[D(x, x, y), a(y)] + 4[D(x, y, y), a(y)] + [f(y), a(y)] \in Z, \text{for all } x, y \in l.
(5.2.3)

From (5.2.2) & (5.2.3), we get

\[4[D(x, x, y), a(x)] + 6[D(x, x, y), a(x)] + 4[D(x, y, y), a(x)] + \\
[f(y), a(x)] + [f(x), a(y)] + 4[D(x, x, y), a(y)] + 6[D(x, x, y), a(y)] + \\
4[D(x, y, y), a(y)] \in Z, \text{for all } x, y \in l. \quad (5.2.4)

Replacing \(y \) by \(-y\) in (5.2.4) we have

\[-4[D(x, x, y), a(x)] + 6[D(x, x, y), a(x)] - 4[D(x, y, y), a(x)] + \\
[f(y), a(x)] - [f(x), a(y)] + 4[D(x, x, y), a(y)] - 6[D(x, x, y), a(y)] + \\
4[D(x, y, y), a(y)] \in Z, \text{for all } x, y \in l. \quad (5.2.5)

Comparing (5.2.4) and (5.2.5) and using 2-torsion freeness of \(R \), we get

\[4[D(x, x, y), a(x)] + 4[D(x, y, y), a(x)] + [f(x), a(y)] + \\
6[D(x, x, y), a(y)] \in Z, \text{for all } x, y \in l. \quad (5.2.6)

Substitute \(y + z \) for \(y \) in (5.2.6) and using (5.2.6), we get

\[4[D(x, x, y + z), a(x)] + 4[D(x, y + z, y + z), a(x)] + [f(x), a(y + z)] + \\
6[D(x, x, y + z, y + z), a(y + z)] \in Z, \text{for all } x, y, z \in l. \]
Chapter-5

\[4[D(x,x,y),\alpha(x)] + 4[D(x,x,z),\alpha(x)] + 4[D(x,y,y),\alpha(x)] + 4[D(x,y,z),\alpha(x)] \]
\[+ 4[D(x,y,y),\alpha(x)] + 4[D(x,z,y),\alpha(x)]
\[+ 4[D(x,y,z),\alpha(x)] + 4[D(x,z,y),\alpha(x)]
\[+ 4[D(x,z,z),\alpha(x)] + [f(x),\alpha(y)] + [f(x),\alpha(z)]
\[+ 6[D(x,x,y),\alpha(y)] + 6[D(x,y,z),\alpha(y)]
\[+ 6[D(x,x,z),\alpha(y)] + 6[D(x,x,z),\alpha(y)]
\[+ 6[D(x,x,y),\alpha(z)] + 6[D(x,y,z),\alpha(z)]
\[+ 6[D(x,x,z),\alpha(z)] + 6[D(x,x,z),\alpha(z)] \in Z.
\]

\[12[D(x,y,z),\alpha(x)] + 12[D(x,y,z),\alpha(x)] + 12[D(x,y,z),\alpha(y)] + \\
6[D(x,z,z),\alpha(y)] + 6[D(x,x,y),\alpha(z)] + 12[D(x,x,y),\alpha(z)] \in Z, \text{ for all } x, y, z \in I. \quad (5.2.7)
\]

Replacing \(z \) by \(-z\) in (5.2.7) and compare with (5.2.7), we obtain

\[-12[D(x,y,y),\alpha(x)] + 12[D(x,y,z),\alpha(x)] - 12[D(x,x,y),\alpha(y)]
\[+ 6[D(x,z,z),\alpha(y)] - 6[D(x,x,y),\alpha(x)]
\[+ 12[D(x,x,y),\alpha(x)] \in Z
\]

\[2(12[D(x,z,y),\alpha(x)] + 12[D(x,x,y),\alpha(y)] + 6[D(x,x,y),\alpha(z)]) \in Z. \quad \mathbb{R} S
\]

for all \(x, y, z \in I. \)

\[\leq 2 \cdot 4 \quad \mathbb{V} 4 \mathbb{H}
\]

Using of 2- torsion free ring, we have

\[12[D(x,z,y),\alpha(x)] + 12[D(x,x,y),\alpha(y)] + 6[D(x,x,y),\alpha(z)] \in Z,
\]

for all \(x, y, z \in I. \quad (5.2.8)
\]

91
Substitute $y + u$ for y in (5.2.8) and use (5.2.8) we get

\[12[D(x, z, y + u, y + u), a(x)] + 12[D(x, x, y + u, z), a(y + u)] + 6[D(x, x, y + u, y + u), a(z)] \in Z, \text{ for all } x, y, z, u \in I. \]

\[12[D(x, z, y + u, y + u), a(x)] + 12[D(x, z, y + u, y), a(x)] + 12[D(x, z, y, u), a(x)] +
\]

\[12[D(x, z, u, u), a(x)] + 12[D(x, y, z, y), a(x)] + 12[D(x, x, y, z), a(y)] +
\]

\[12[D(x, x, z, u), a(u)] + 12[D(x, x, x, z), a(u)] + 6[D(x, x, y, y), a(x)] +
\]

\[6[D(x, x, y, u), a(z)] + 6[D(x, x, u, y), a(z)] + 6[D(x, x, u, u), a(z)] \in Z, \text{ for all } x, y, z, u \in I. \]

\[24[D(x, z, y, u), a(x)] + 12[D(x, x, y, z), a(u)] + 12[D(x, x, u, z), a(y)] +
\]

\[12[D(x, y, u), a(z)] \in Z, \text{ for all } x, y, z, u \in I. \] \quad (5.2.9)

Since R is a 2 and 3-torsion free and replacing y, u by x in (5.2.9), we have

\[24[D(x, z, x, x), a(x)] + 12[D(x, x, x, z), a(x)] + 12[D(x, x, x, z), a(x)] +
\]

\[12[D(x, x, x, x), a(z)] \in Z, \text{ for all } x, z \in I. \]

\[48[D(x, x, x, z), a(x)] + 12[D(x, x, x, z), a(x)] \in Z, \text{ for all } x, z \in I. \]

\[4[D(x, x, x, z), a(x)] + [f(x), a(x)] \in Z, \text{ for all } x, z \in I. \] \quad (5.2.10)

Again replaced z by zx in (5.2.10) and using (5.2.10) we obtain

\[4[D(x, x, x, zx), a(x)] + [f(x), a(x)z] \in Z, \text{ for all } x, z \in I. \]

\[4[D(x, x, x, zx), a(x)] + [f(x), a(x)a(z)] \in Z, \text{ for all } x, z \in I. \]

\[4[zf(x) + a(x)D(x, x, x, z), a(x)] + [f(x), a(x)a(z) + a(x)[f(x), a(x)] \in Z, \]

for all $x, z \in I$.

92
\[4[z, a(x)]f(x) + 4z[f(x), a(x)] + 4a(x)[D(x, x, x, z), a(x)] + \]
\[[f(x), a(x)]a(z) + a(x)[f(x), a(z)] \in Z, \text{ for all } x, z \in I. \]

\[a(x)([f(x), a(z)] + 4[D(x, x, x, z), a(x)]) + (a(z) + 4z)[f(x), a(x)] + \]
\[4[z, a(x)]f(x) \in Z, \text{ for all } x, z \in I. \]

(5.2.11)

Therefore, from (5.2.11), we get

\[[a(x)([f(x), a(z)] + 4[D(x, x, x, z), a(x)]) + a(x)] + \]
\[([a(z) + 4z][f(x), a(x)], a(x)] + 4[[z, a(x)]f(x), a(x)] = 0, \text{ for all } x, z \in I \]

(5.2.12)

\[a(x)([f(x), a(z)] + 4[D(x, x, x, z), a(x)]) + a(x)] + \]
\[(a(z) + 4z)[f(x), a(x)] + [a(z) + 4z, a(x)][f(x), a(x)] + \]
\[4[[z, a(x)], a(x)]f(x) + 4[z, a(x)][f(x), a(x)] = 0, \text{ for all } x, z \in I. \]

\[a(x)([f(x), a(z)], a(x)] + 4a(x)[D(x, x, x, z), a(x)], a(x)] + (a(z) + \]
\[4z)[f(x), a(x)], a(x)] + [a(z), a(x)][f(x), a(x)] + 4[z, a(x)][f(x), a(x)] + \]
\[4[[z, a(x)], a(x)]f(x) + 4[z, a(x)][f(x), a(x)] = 0, \text{ for all } x, z \in I. \]

\[a(x)([f(x), a(z)], a(x)] + [a(z), a(x)][f(x), a(x)] + [4z, a(x)][f(x), a(x)] + \]
\[4[[z, a(x)], a(x)]f(x) + [4z, a(x)][f(x), a(x)] = 0, \text{ for all } x, z \in I. \]

\[([a(z) + 8z), a(x)][f(x), a(x)] + 4[[z, a(x)], a(x)]f(x) = 0, \text{ for all } x, z \in I. \]

(5.2.13)

Replacing \(z \) by \([f(x), a(x)]f(x) \) in (5.2.13), we get
\[(\alpha(f(x), \alpha(x))f(x)) + 8f(x), \alpha(x)]f(x), \alpha(x)]f(x), \alpha(x)] +

4 \left[(f(x), \alpha(x))f(x), \alpha(x)\right]f(x) = 0, \text{ for all } x \in I.

\[(\alpha(f(x)), \alpha(x))]f(x), \alpha(x)]f(x), \alpha(x)] +

8[(f(x), \alpha(x))f(x), \alpha(x)]f(x), \alpha(x)] + 4[(f(x), \alpha(x))f(x), \alpha(x)] +

4 \left[(f(x), \alpha(x))f(x), \alpha(x)\right]f(x) = 0, \text{ for all } x \in I.

\[(\alpha(f(x)), \alpha(x)]\alpha(f(x), \alpha(x))]f(x), \alpha(x)] +

8[(f(x), \alpha(x))f(x), \alpha(x)]f(x), \alpha(x)] + 8f(x), \alpha(x)]f(x), \alpha(x)]f(x) +

4 \left[(f(x), \alpha(x))f(x), \alpha(x)\right]f(x) = 0, \text{ for all } x \in I.

\[(\alpha(f(x)), \alpha(x)]\alpha(f(x), \alpha(x))]f(x), \alpha(x)] +

8[f(x), \alpha(x)]f(x), \alpha(x)]f(x), \alpha(x)] = 0, \text{ for all } x \in I.

\[(\alpha(f(x)), \alpha(x)]\alpha(f(x), \alpha(x))]f(x), \alpha(x)] + 8[f(x), \alpha(x)]f(x), \alpha(x)]^3 = 0, \text{ for all } x \in I.

Since \(f \) is commutes on \(I \), and we have 2, 3- torsion freeness of \(R \), we have

\[2[f(x), \alpha(x)]^3 = 0\]

It follows that \((2[f(x), \alpha(x)]^2) R 2([f(x), \alpha(x)]^2) = 0. \)

Since \(R \) is semiprime, we have
2[f(x), α(x)]^2 = 0, for all \(x \in I\). \hspace{1cm} (5.2.14)

On the other hand, taking \(z = x^2\) in equation (5.2.10), we get

\[
4[D(x, x, x, x^2), α(x)] + [f(x), α(x^2)] \in Z, \text{ for all } x \in I.
\]

\[
4[D(x, x, x, x) + α(x)D(x, x, x, x), α(x)] + [f(x), α(x)α(x)] \in Z, \text{ for all } x \in I.
\]

\[
4[f(x) + α(x)f(x), α(x)] + α(x)[f(x), α(x)] + [f(x), α(x)]α(x) \in Z,
\]

for all \(x \in I\).

\[
4[f(x), α(x)] + 4[α(x)f(x), α(x)] + 2α(x)[f(x), α(x)] \in Z, \text{ for all } x \in I.
\]

\[
4[x, α(x)]f(x) + 4x[f(x), α(x)] + 4α(x)[f(x), α(x)] + 4[α(x), α(x)]f(x) + 2α(x)[f(x), α(x)] \in Z, \text{ for all } x \in I.
\]

\[
6α(x)[f(x), α(x)] + 4x[f(x), α(x)] + 4[x, α(x)]f(x) \in Z, \text{ for all } x \in I. \hspace{1cm} (5.2.15)
\]

Therefore, from equation (5.2.15), we get

\[
[f(x), 6α(x)[f(x), α(x)] + 4x[f(x), α(x)] + 4[x, α(x)]f(x)] = 0, \text{ for all } x \in I.
\]

\[
[f(x), 6α(x)[f(x), α(x)] + [f(x), 4x[f(x), α(x)] + [f(x), 4x, α(x)]f(x)] = 0
\]

\[
6α(x)[f(x), [f(x), α(x)] + 6[f(x), α(x)][f(x), α(x)] + 4x[f(x), [f(x), α(x)]]
\]

\[
\hspace{1cm} + 4[f(x), x][f(x), α(x)] + 4[f(x), [x, α(x)]f(x)
\]

\[
\hspace{1cm} + 4[x, α(x)][f(x), f(x)] = 0
\]

\[
6[f(x), α(x)]^2 + 4[f(x), [x, α(x)]f(x) = 0, \text{ for all } x \in I.
\]

\[
6[f(x), α(x)]^2 + 4[[f(x), x], α(x)]f(x) = 0, \text{ for all } x \in I. \hspace{1cm} (5.2.16)
\]

Since \(f\) is commuting on \(I\) and using equation (5.2.16), we get
\[6[f(x), \alpha(x)]^2 = 0, \text{ for all } x \in I.\]

We have 2-torsion freeness, we get

\[3[f(x), \alpha(x)]^2 = 0, \text{ for all } x \in I.\]
\hspace{10em} (5.2.17)

Comparing (5.2.14) and (5.2.17), we get

\[[f(x), \alpha(x)]^2 = 0, \text{ for all } x \in I.\]

Note that zero is the only nilpotent element in the center of semiprime ring.

Thus, \([f(x), \alpha(x)] = 0, \text{ for all } x \in I.\]

\[[f(y), \alpha(y)] = 0, \text{ for all } y \in I.\]

This completes the proof.

Corollary 5.2.1: Let \(R \) be a 3!-torsion free prime ring, \(I \) be a non-zero ideal of \(R \) and \(\alpha \) be an anti-automorphism of \(R \). Suppose that there exists a non-zero symmetric skew 4-derivation \(D: R^4 \to R \) associated with the anti-automorphism \(\alpha \) such that the trace function \(f \) is commuting on \(I \) and \((f(x), \alpha(x)) \in Z, \text{ for all } x \in I, \text{ then } D = 0.\)

Proof: From theorem 5.2.1, \([f(x), \alpha(x)] \in Z, \text{ for all } x \in I, \text{ then we have } [f(x), \alpha(x)] = 0, \text{ for all } x \in I.\) From [22, Theorem1] states that \([f(x), \alpha(x)] = 0, \text{ for all } x \in I, \text{ then } D = 0.\) Observing above two relations we concludes that \([f(x), \alpha(x)] \in Z, \text{ for all } x \in I, \text{ then } D = 0.\)