CHAPTER II

PRE-HISTORY
SECTION: I

PREVIOUS RESEARCH WORK

Stone Age research in Bastar is hardly three decades old. Prior to that no significant work was done. V.D. Krishnaswami did the pioneering work by collecting a few microlithic-tools from Chitrakuta in the early fifties.\(^1\) His paper 'Prehistoric Bastar' led Pandit M.S. Vatsa to assert the archaeological potentialities of Bastar region. The region’s significance in megalithic-neolithic context was emphasised by him in the following manner: "Again, recent developments in the study of the microlithic elements in the Indian Stone Age would suggest that the Tinnevelley Teris, the laterite conglomerate in the Madura and Shivaganga in the south, the Kurnool and Godavari districts and the Central Indian and Bastar regions are of potential importance..... An overlap of these two (megalithic funerary monuments of south India, Assam and North East India) would be possible in the Bastar and Godavari area. Thus, more than one aspect this reason seems to hold the key for the evidence concerning ancient agricultural communities of India.\(^2\)

V.D. Krishnaswami, referring to the Bastar region as TERRA INCognITA to the archaeologist, has shown its great

importance. He opines that ... "the aboriginal tribes of Bastar still erect memorial megalithic monuments to the dead, a feature which make the prehistory of the region very interesting. ... The river valley of the Indravati and the Kolab Sabari of the Bastar, both affluents of the Godavari, have to be surveyed carefully for the Old Stone Age sites." According to him Bastar is the key-place in India to test the Neolithic problems, as the hill Marias of Abujmar are least affected by cultural contacts later than the Neolithic. The region remained neglected even after till the present studies which I began in 1965. Wakanwar, however, claims to have collected microliths from Gupansar cave in Bastar. The Gupansar (Gupteshwar) cave located in the adjacent region of Orissa State did not yield any Stone Age Tool during investigations.

THE EXTENT OF SURVEY AND LOCATION OF SITES

The region of Bastar is vast enough to be explored thoroughly by a single hand. Due to dense forests and hill infested with wild animals and tribes, as well as due to absence of the means of communications the task before this humble explorer has been very-very onerous one.

3 Krishnaswami, V.D.; op. cit.
4 Krishnaswami, V.D.; Ancient India, No. 9 p. 79.
Rivers like the Indrawati, the Mahanadi, the Godavari and their tributaries the Narangi, the Sabari, the Chintavâga, the Talperu, the Kanger, the Sankani, the Dânkani and the Nivara have been thoroughly surveyed for collecting the Stone Age Tools.

The extensive Abûjhmâr hills, occupying an area of about 2200 sq. kms., which is practically inaccessible to the vehicles; have, however, been surveyed during the course of investigations. The abundance of Stone Age relics indicate that this part of the country was inhabited during the pre-historic times. The north-western region of Bhanupratapapur, Antagarh, Koelibeda, Partâpapur and Paralkote, however, could not be surveyed.

Altogether about sixteen months were spent in the field work in five seasons i.e. from 1965 to 1975. Happily, this exploration yielded fruitful results in the form of a large quantity of artifacts. No section bearing Stone-Tools has been encountered so far. However, four cultural periods may

6 As reported by W. V. Grigson (Maria Gonds of Bastar, London, 1938, p. 3) the Abûjhmâras, in the year 1928, were known as "Naked savages, living on roots and springs and hunting for strangers to sacrifice."

The land record of the Abûjhmâr hill region is not maintained for it is practically isolated from the rest of the world.
be recognised in Bastar on the present evidence: 7
(1) Early Stone Age; (ii) Middle Stone Age; (iii) Late Stone Age; and (iv) Neolithic Age.

LOCATION OF SITES

The succeeding pages present the detailed description of the prehistoric sites in Bastar.

The East-Central Region:

The following 13 sites are located in the eastern part of the central Bastar.

1. Kharagaghat:

The first stone tool to be found by the author was at Kharagaghat on river Indravati. The site located on the outskirts of Jagdalpur town has yielded artifacts of Middle Stone Age.

2. Kalipur:

This small village on Indravati is two kms. down than Kharagaghat. Artifacts have been collected from the river bed at Ghoraadhghat which is adjacent to Kalipur. According to the traditions Ghoraadhahad been a place where horse drawned long back.

3. Metawara:

This small village, which is consisted of a few huts, is located 06 kms. north to Jagdalpur on National highway. Stone Age relics have been discovered from the bed of a small stream.

4. Ghatichanga:

It is a small village, situated nearly 12 km. to the north of Jagdalpur on the way to Bastar village. Here a small mound yields late Stone Age artifacts.

5. Garh-Bodhra:

Garh-Bodhra, located 35 kms. west to Jagdalpur, is approachable from Bastar village. The village, situated at the confluence of Indravati and Narangi, is hardly 02 kms. from Narayanaapala, the famous temple-site.

6. Madhota:

Situated 02 kms. east of Garh Bodhra, this site has yielded Middle Stone Age tools.

7. Deurgaon:

It's a small village on the left bank of Indravati and is about 16 kms. West to Jagdalpur on Chitrakuta road. Early stone Age Tools have been collected from Deurgaon.

8. Chitrakuta:

Chitrakuta, famous for its waterfall on Indravati is 36 kms. West to Jagdalpur. Dr. Krishnaswami reported the
occurrence of microliths from this site. The discovery of the microlithic tools from this site was very significant as it was the first Stone Age Site to be reported from this vast region.

9. (Garh) Chandella:

This small village located on the foot of a hill is about 70 kms. NW of Jagdalpur. The microliths occur on the top of the 300 m. high hill. Remains of a Neolithic settlement have been noticed on the hill top.8

The site is approached either after crossing the river Indravati at Chitrakuṭa or through Nardum pass. The way leading to Garh Chandella is inaccessible to vehicles. Garh Chandella, along with Binta, Bheja and Karaikota is located in a valley which is surrounded by hills.

10. Bheja:

This small village, opposite Garhchandella, located on the left bank of Indravati yields middle Stone Age tools.

11. Karaikota:

Stone Age artifacts have been collected from this village, situated 02 kms. south to Bheja.

12. **Tirathgarh**:

The place famous for its waterfall is about 30 kms. SW to Jagdalpur. Stone-Tools have been collected from the bed of river Kanger near Tirathgarh.

13. **Navalibhata**:

This small village is located about 31 kms. SW to Jagdalpur on Geedam road.

14. **Satadhara (Barsur)**:

Satadhara is about 88 kms. west to Jagdalpur. The site is located in the middle part of Central Bastar. A good number of stone tools have been collected from the bed of Indravati at Satdhar (seven streams). It is 08 kms. north to Barsur, the ancient capital town of the Naga rulers.

The West-Central Region:

The following sites yielding Stone Age Artifacts are located in the western part of the Central Bastar.

15. **Hitul**:

This small village, situated on the fringe of Abujhmar hills is in proximity to Indravati and is approached on foot from Bhairangarh. Bhairangarh, 110 kms. from Jagdalpur, is famous for its ancient icons, temples and inscriptions. Middle Stone Age tools have been discovered from this site.
16. **Alwada**:

Middle Stone Age artifacts have been collected from this site, which is close to Hitul in Abujhmar hills.

17. **Mingachal Nalla**:

This small stream, flowing at the distance of 08 kms. east to Kutru on Kutru-Matewara forest road, has yielded Stone Age implements. Kutru, the headquarter of the old Kutru Zamindari is located about 160 kms. west to Jagdalpur.

18. **Vedre**:

Vedre, about 21 kms. north to Kutru, is situated on the left bank of Indravati. Stone-Tools and a cave encircled by Stone-blocks have been discovered near Vedre.

19. **Lanka**:

Lanka, known as Mar-lanka in Abujhmar is situated at the distance of about 02 kms. from Vedre on the opposite bank of Indravati.

20. **Padmata**:

This small village, on the Abujhmar hills is situated 02 kms. north to Lanka. Middle Stone Age tools have been collected from this site.

21. **Tahankwada**:

Tahankwada, about 05 kms. from Padmata in Abujhmar hills yielded Stone Age artifacts.
The Upper South-Western Region:

The upper south-western region of the district, comprised within the Bijapur Tahsil is drained by the Mingachal, the Chintavagu, the Talperu, and the Chinta rivers. This part of the district has a large number of Stone Age Sites.

22. Sankampalli:

Artifacts of Early Stone Age have been discovered from the bed of river Chintavagu near Sankampalli. This small village, located 15 kms. south to Madded is approached from Madded.

23. Polampalli:

Polampalli is situated about 58 kms. south to Bijapur, the Tahsil headquarter. Being on Hirapur-Pujari Kanker forest road it is approached via Avapalli-Phutkel. The small stream, which joins river Talperu near Polampalli, has yielded Early Stone Age implements.

24. Murdanda:

Situated about 46 kms. south to Bijapur, on Avapalli-Basaguda forest road this village is also approached via Avapalli. Stone Age relics, in addition to mediaeval sculptures, have been noticed in this village.

25. Basaguda:

This relatively large village, 12 km. east to Murdanda, is located near the bank of river Talperu. Stone Age implements
have been collected from Gang ghat at Basaguda.

26. Nambi:

This small village is located at the foot of Usoor-hills amidst the thick forest. It is 10 km. south to Usoor, the block headquarters, is situated about 51 kms. south to Bijapur.

27. Pujari Kanker:

Pujari Kanker, 19 kms. S. to Usur, is located at the foot of the Usur hills. Stone Age artifacts have been collected from the small stream near Usur. There is a cave at the top of the hill near this village. According to the local tradition the cave was occupied by Pandavas during the exile.

28. Kotapalli:

The village, headquarters of the old Pamed Zamindari, is located on the elevated land. Kotapalli, situated on the bordering region of the district is 20 kms. S. to Pujari Kanker.

29. Anjunali:

This small village, located at the foot of the hills is approached via Rudraram, which is located 16 kms. west to Meddod on Bhopalpatnam road. Stone Age tools have been discovered from a Nalla near this village.

The Dantewada Region:

The major part of the Dantewada Tahsil is drained by the tributaries of Indravati i.e. the Tummar, the Dankani and the
Sankani. A small part of the eastern Dantewara region is irrigated by the Masger and Gorli, the tributaries of the Sabri. Including Barsur, situated in Indravati basin, only six sites have been brought to light.

30. Gumalnar:

This is a very small village located on the left bank of the Indravati and is 20 km. S.W. to Barsur.

31. Balpet:

Situated on the bank of river Dankani, 02 km. N. to Dantewara town, this village yielded stone tools.

32. Gangapala:

The village is situated 06 kms. south to Nakulnar on Jagargunda road. Nakulnar, a market centre, is 26 km. from Dantewara, the Tahsil headquarter.

33. Painar:

Middle Stone Age relics have been collected from this small village, situated 10 kms. south to Gongapal on Jagargunda road.

34. Aranpur:

Aranpur, a forest village situated close to the Aranpur forest range is about 20 km south to Painar.
The Konta Region:

The Konta Tahsil occupying the southern and south-eastern part of the district is drained by the Sabari and its tributaries. Western part of the tahsil is irrigated by the Chinta river. All of the stone Age sites discovered are located on the eastern part that too, adjacent to the bordering region of the Tahsil.

35. Talnar:

This small village is approachable by 16 kms. long forest road from Chhindagarh. It is situated at the south-eastern border of the district. Stone Age Tools have been noticed on the bed of the Sabri near the village.

36. Guma:

Middle Stone Age tools have been discovered at village Guma, situated 04 kms. south to Talnar.

37. Phulbagdi:

The village situated on the bank of Masger river is 16 kms. north to Kerlapal. Kerlapal is about 20 kms. from Sukma on Konta road.

38. Dornapal:

A Neolithic celt and Middle Stone Age artifacts have been collected from the bank of Sabri 02 kms. west to Dornapal. Dornapal is situated about 44 km south to Sukma on Konta road.
39. Phandiguda:

Phandiguda is situated nearly 04 km. North to Konta, the Tahsil headquarter.

The Kondagaon-Region:

The Kondagaon Tahsil drained by the tributaries of Indravati has about seven Stone Age sites. The sites of archaeological importance like Edengā, Garhdhanora and Bade-Donger are comprised within this tahsil.

40. Girola:

Girola is situated at the bank of the Narangi river, 08 km north to Kondagaon.

41. Jhuga:

This village, about 26 kms north to Kondagaon on Raipur road, is situated on the bank of the Narangi.

42. Pipra:

Pipra, approachable from Bahigaon on Jagdalpur-Raipur road, is located at the bank of the Bhanwardia river. Stone Age tools have been collected from this village.

43. Barkai:

This small village is situated 05 kms. south-east to Pharagaon on Jagdalpur-Raipur National highway.
44. **Funder**

It is a small village situated 07 kms. NW to Garhdpur. The famous historical site—Garhdpur is approached via Garka (situated on National highway 43) by a 28 km. long Kacchhā road.

45. **Banuskota**

Approachable from Keskāl it is located about 40 kms. SE to Keshkal.

46. **Murenda**

Situated 10 kms. north to Keshkal, below the Telingbāti, the village once served as a checkpost of former Baster State.

The Kanker Region

The Kanker Tahsil in the NE part of the district is drained by the Sabari and its tributaries.

47. **Lendra**

Stone Age tools have been discovered from a small stream-bed at Lendra, located 12 km. N.E. of Murenda.

48. **Salatola**

This small village, 10 kms. North East from Kanker, is situated on the right bank of the Mahanadi river.

49. **Telavanda**

Located 13 kms. west to Kanker, and 03 kms. off the Bhanupratappur road, this small village had yielded Artifacts of Middle Stone Age.
50. **Devgaoon:**

This village, situated 35 km. East to Lakhanpur, is approached by a kacchha road. Lakhanpur is located on National highway, 19 kms. North to Kanker.

The **Narayanpur Region:**

Kotri, Nivra and Chargaon rivers irrigate the major part of the Narayanpur Tahsil. So far only three Stone Age Sites have been discovered in this region.

51. **Bakulvah:**

This village, about 07 kms. south-west to Narayanpur, is located near the course of Nivra river.

52. **Bermakota:**

Middle Stone Age tools have been collected from a streamlet near Bermakota, situated 16 kms. SE to Narayanpur.

53. **Khatgaon:**

Stone tools have been collected from the bed of river Chargaon near this village. The village is situated 11 kms. north to Koelbeda. Koelbeda stands on Narayanapur-Partapapur road.
<table>
<thead>
<tr>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD : Alwada</td>
</tr>
<tr>
<td>AJL : Arjunali</td>
</tr>
<tr>
<td>ASJ : Basaguda</td>
</tr>
<tr>
<td>BJH : Sheja</td>
</tr>
<tr>
<td>CTK : Chitrakuta</td>
</tr>
<tr>
<td>DHG : Deurgaon</td>
</tr>
<tr>
<td>NPL : Dornapal</td>
</tr>
<tr>
<td>GCD : Garhchandella</td>
</tr>
<tr>
<td>GDH : Ghordah (Kalifpur)</td>
</tr>
<tr>
<td>GGT : Ganghat (Basaguda)</td>
</tr>
<tr>
<td>GLD : Ghatlohang</td>
</tr>
<tr>
<td>GMA : Guma</td>
</tr>
<tr>
<td>GPL : Gongpal</td>
</tr>
<tr>
<td>HTL : Hitul</td>
</tr>
<tr>
<td>KLP : Kalifpur</td>
</tr>
<tr>
<td>KKT : Karalkota</td>
</tr>
<tr>
<td>KGT : Kharaghat</td>
</tr>
</tbody>
</table>
THE SOIL

As no work worth mentioning has been done on the pleistocene geology of Bastar district the pleistocene formation remains unknown. A sweeping reference of the soils of Bastar district has been made by Dr. Dave "The soil is sandy and clayey being product of weathering of shales... Extensive thick capping of laterite occurs a mile on either side of Kavali, blanketing the pink shales below. It is found capping the hillocks hill 1904 south of the area of occurrence of copper ore, hill 2010, one mile west of Kolvada, the hillock S.E. of Bammaras and the hill near the cutting of the Gapapadoro-Koleng footpath with the Kanger river. Extreme leaching has resulted in greater concentration of iron making is highly ferruginous places". 9

However, an attempt has been made to present an sketchy picture of the soils in Bastar, based on stray informations and observations. It has been observed that the distribution of primary and secondary laterite as well in the region is relatively wide. The primary laterite occurring immediately above the bedrock has been covered up by the deposits of clay, gravels and silt. The thick capping of secondary laterite occurs at many places.

As no section bearing Stone Tools has been encountered, the correlation of human activities with the climatic changes is not possible at the present state of our knowledge.

Terminology:

The suitable and accepted terminology for the Stone Age... Cultures is one of the major problems in Indian prehistory. A section of the prehistorians follow the European terminology like Palaeolithic, Mesolithic and Neolithic. The others have coined the terms like Early, Middle and Late Stone Age by dividing the Stone Age Industries of India into three distinct traditions. The latter terminology has been followed in the present work.
SECTION II

EARLY STONE AGE CULTURE

Early Stone Age tools have been found from eleven sites in Bastar. The principal elements are hand-axes, scrapers and cleavers. Flakes, chopper - chopping tools have also been noticed along with a single point. Hand-axes predominate in the collection.

Sandstone, flint and quartzite is used as raw material. The tools occur loose in the river bed and on the surface in the forest and hill slopes. No patination is found, though the white calcareous incrustations are noticed on the artifacts found in Polampalli Wala. The crude and the advanced elements occur together and form one assemblage of tools. The culture belongs to the tradition of bifacial tools. Primarily, the block-on-block technique is used, but a few specimen show the use of cylinder hammer technique.

CLASSIFICATION AND DESCRIPTION OF THE IMPLEMENTS

Classed into two stages by the author, the tools of this age represent two phases of the chronological development. Stage I is represented by crude tools with irregular shapes, asymmetrical body and rough working edge resulted by flaking from the tip only. Major part of the total area retains the cortex as the tools are prepared by block-on-block-technique.

The second stage is marked by the small flake scars, the introduction of cylinder hammer technique, the thin and sharp working edge running around the periphery, symmetrical and standardised shapes and small patches of cortex. Flaked almost completely the tools tend to become smaller. Tools are prepared
by controlled flaking.

The following tool types made on pebble, core and flake occur in both the stages:

(a) Hand-axes (b) Scrapers (c) Cleavers
(d) Chopper-chopping tools (e) Cores, &
(f) Points.

(a) **Hand-axes**

Excepting one specimen all of the hand-axes are bifacial. The number of core-tool is highest. The profile of the tools in stage I is sinusoid and irregular, while the others of the developed stage have regular line of profile. Likewise, the handaxes of the stage I have heavy and thick butt-end, while the others of the stage II have lighter and thinner butt-end. In stage II the centre is the thickest part of the tools instead of the butt. The cross section ranges from roughly bio-convex to roughly plano-convex. The completely flaked tools of stage II show sharp working edge and nicely trimmed tip.

Unifacial Hand-axe

Only one specimen made on a large flake has been found so far.

1. KRT, Quartzite; triangular hand-axe; three flakes removed from the upper surface leaving cortex at the central ridge; unflaked flat lower surface retains cortex; thick heavy butt; thick pointed tip; thin working-edge; bio-convex cross section. Stage I (Plate I, fig. 1).

Bifacial Hand-axe

Bifacial hand-axes are subdivided as follows:

(a) Pebble-butted hand-axe.
(b) Fully flaked hand-axe.
(a) **Pebble-butted hand-axe**:

1. VDR, Sandstone; pear shaped; flaked on both the surfaces at the anterior; posterior retains a pebble cortex; rounded butt, thick working-edge; unrolled. Stage I (Plate I, fig. 2).

(b) **Fully flaked hand-axes**:

1. MTW, Flint; **triangular handaxe**. Both surfaces flaked; step prepared on upper surface by removing two large flakes; worked lateral sides; thick and flat butt-end; beak-like point providing a curved profile to the tool. Stage I (Plate I, fig. 3).

2. SDR, Quartzite, **triangular hand-axe**. Central ridge on dorsal surface formed by removing large scars; two large flakes removed from ventral surface; thick and heavy butt-end; thick tip; curved profile. Stage I (Plate I, fig. 4).

3. ML, flint; **spear-head type hand-axe**. Dorsal surface flaked at the sides, tip and butt leaving humped cortex in centre; completely flaked ventral surface; well trimmed moderately thin and sharp apex; sharp working edge at the anterior; straight profile; elongated thin butt with sharp cuts on both the sides at posterior resulted in attempt to prepare a tang to facilitate hafting. Stage II (Plate I, fig. 5).
4. PPR, Quartzite; **Elongated hand axe-cum-side-scraper.** Dorsal surface completely flaked; ventral surface chipped near the tip and one of the sides at anterior, rest cortexed; straight sinuous profile; thick pointed tip; moderately thin butt-end; effective scraping-edge prepared by chipping one of the lateral sides. Stage I (Plate I, fig. 6).

5. NMB, Flint; **elongated triangular hand-axe;** One of the lateral sides on dorsal surface and butt flaked, rest cortexed; two small chips detached at the middle of one lateral side leaving butt and tip cortexed. Long thick tip; moderately thin butt-end; straight sinuous profile. Stage I (Plate I, fig. 7).

6. GDH, Chert; **Cordate hand-axe;** roughly centrally ridged dorsal surface retains little cortex; fully flaked ventral surface; sharp working edge around; broad sharp tip with marks of battering; broad rounded butt; incurved sides meeting in a point; symmetrical bioconvex section. Stage II. (Plate I, fig. 8).

7. MVD, Sandstone; **fully flaked pebble-handaxe, elongated pear-shaped;** flakes removed from anterior lateral sides leaving the cortexed butt on the dorsal surface; broad, tough-shaped thick tip resulted by flaking on ventral surface; both surfaces humped at the centre; rounded thick butt showing sinuous butt-line; one 's' twist and the other straight profile; bio-convex cross section, rolled. Stage II. (Plate I, fig. 9).

8. DRG, Chert; Pointed triangular handaxe with thinner and sharp point and heavy butt-end; battered tool. Stage II.
9. GDH, Flint; lanceolate; both surfaces flaked completely excepting a small patch of cortex on one surface at anterior; symmetrical; straight profile; sharp working edge around; nearly flat surfaces; tapering sides; thin, sharp elongated tip; thin, worked and nearly round butt-show recent fracture. Stage II. (Plate I, fig. 11).

10. TRG, quartzite; elongated-pearshaped hand-axe. Dorsal surface flaked at the butt, tip and one of the lateral sides; cortexed centre; ventral surface flaked leaving a small cortex on centre, chipped working edges; thick elongated tip; one side has straight the other has sinuous profile; moderately thin butt-end; rolled. Stage II. (Plate I, fig. 12).

11. VDR; Chert; broad oval handaxe. Flat lower surface, flaked on the periphery; two small scars near the centre also; deep steps produced by flaking on upper surface; ridge at the centre across the lateral sides; broad and thick oval tip; third-broad roundish butt; sinuous profile. Stage II (Plate I, fig. 13).

12. MTW, Flint; Pointed ovate-cum-scraper. Deep-scarred surfaces flaked completely leaving small cortex near the butt; one lateral side has sharp working-edge; other side having thin and worked anterior is thick and unflaked at posterior; broad elongated thin tip; sharp lateral side forms scraping-edge,
while the unflaked thick posterior of the other lateral side serves as scraper-butt; one side has straight, the other has sinusoid profile. Stage II (Plate I, fig. 14).

13. BHJ, Quartzite; Double pointed handaxe-cum-side-scraper. Flattened lower surface has cortex at the centre, deep scars on one of the lateral sides; completely flaked raised upper surface is almost equally divided by a mid-ridge; working edges flaked around; one of the tips moderately sharp, the other elongated tip (which probably served as butt) is blunt; one lateral side convex, the other roughly straight; lateral sides served as scraping-edges. Stage II. (Plate I, fig. 15).

14. DKG, Chert; Handaxe-cum-side-scraper. Large and massive three faced core-tool; ovoid in outline; roughly elongated ends; wide convex edge at one of the lateral sides, other thick lateral side serves as butt; lower flat surface chipped at working edge; thinly chipped upper surface forms a sloping edge. Stage II (Plate I, fig. 15).

Chopper:

Chopper, the characteristic tool of Sohan culture, is primarily unifacial. These tools, ordinarily large in size, occur beyond the Sohan valley also.

Only three specimens have been found.

1. Pebble-Chopper. FKR, Sandstone. Chopper on a round oval pebble; deep flake-scars on anterior portion of the
upper surface, broad working-edge; lower surface unworked; round butt-end. Stage I. (Plate I, fig. 17).

2. Core-Chopper, PKR, Sandstone. Massive chopper, anterior portion of the upper surface is steepened by unidirectional chipping; sharp, broad chopping-edge, pointed flat butt. Stage I (Plate I, fig. 18).

3. Flake-Chopper, PKR, Sandstone. Made on a roughly triangular and flat flake; broad wavy chopping-edge prepared by removing two big scars from one of the lateral sides on upper surface, the other lateral side retains cortex throughout; flat lower surface; truncated butt. Stage I. (Plate I, fig. 19).

Chopping-Tool:

Chopping-tools are produced by alternate flaking on a pebble or core. These tools, used for chopping purposes, are heavy, large, bifacial; and have jagged wavy cutting-edges.

Only two specimens, made on core, have been noticed.

1. GDH, Sandstone. Chopping tool on a heavy and broad core; lower surface has deep scars near the working-edge; raised upper surface flaked completely; broad, sharp, jagged edge on anterior produced by alternate flaking; elongated, heavy and thick butt. Stage II. (Plate I, fig. 20).

2. MTW, Flint. Chopping tool on a broad elongated flat core; one of the lateral sides forms chopping-edge while the other serves as butt; lower surface flattened by removing deep
flakes is chipped on working edge; convex edge prepared by removing deep scars from raised upper surface; two of the faces unworked; broad, jagged and sharp working edge resulted by alternate flaking; moderately thin heavy butt. Stage I (Plate I, fig. 21).

Cleaver:

Cleavers do not show any sort of marked development, so they cannot be classed in to two stages. They need less amount of working than the handaxes. Both, unifacial and bifacial cleavers retain cortex in majority of the cases.

Unifacial Cleaver:

These are worked only on one surface, the other surface is almost cortexed.

1. SKP; Sandstone. Broad 'U' shaped unifacial cleaver with chisel-like-thick transverse butt and roughly rectangular body; flat undersurface; two large scars removed from both the lateral sides of the raised upper surface; working-edge formed by chipping the anterior; mid ridge; sharp convex edge. Stage I; (Plate 2, fig. 22).

2. GT; Quartzite. Flake-cleaver with narrow transverse butt and convex edge; lower surface flat; a large flake-scar covers more than half area of the upper surface; flat and nearly untrimmed working-edge is produced by removing a large scar at the anterior; thin working-edge; unfinished. Stage I (Plate 2, fig. 23).
3. GGT; Sandstone. Roughly 'U' shaped small unifacial cleaver. Flat lower surface; upper surface completely flaked; straight flat cutting edge; narrow trimmed butt. Stage II. (Plate I, fig. 24).

4. GGT; Sandstone. Unifacial cleaver with broad butt, straight sides and roughly convex working edge. Prominent bulb on the unflaked lower surface; prepared platform on the flaked upper surface; thick flat butt. Stage II. (Plate I, fig. 25).

Bifacial Cleaver:

Only one specimen has been found.

5. SKP; Sandstone. Bifacial cleaver. Narrow butt, broad-convex working edge; lower surface chipped at anterior, rest cortexed; flaked upper surface showing large-deep scars; untrimmed thick lateral sides; trimmed broad and sharp edge; unfinished narrow - sinuous butt. Stage I. (Plate I, fig. 26).

Scraper:

Scrapers are meant ordinarily for scraping and dressing things. They are generally unifacial. Scrapers are divided in to many groups according to their shapes and the nature of the scraping-edges. According to Dr. Movius* - Size is the only criterion by which a chopper would be distinguished from a scraper. Chopper is a large and massive tool, whereas the scraper is smaller in size.

1. Arched-Scraper; DRG; Chert. Made on a massive core; lower surface thinly chipped round the edge; upper surface flaked at anterior; posterior retains cortex; prominent bulb; well trimmed sharp working edge on three faces, fourth thick and flat face serves as butt. Stage II. (Plate I, fig. 27).

2. Arched-Scraper; PLP; Quartzite. Lower surface flat; raised upper surface has sloping sides in three faces; thin edges; flat-thick butt. Rolled. Stage I. (Plate I, fig. 28).

3. Side-Scraper-cum-Cleaver; MTW; Quartzite. Worked on three faces, remained thick face serves as scraper - butt; the scraping edge at one of the lateral side is trimmed alternately; both surfaces retain patches of cortex; trimmed, wavy-sharp scraping-edge; the butt of the cleaver is prepared by snapping one of the ends; the other broad cleaving-end has a fresh fracture. Stage II. (Plate I, Fig. 29).

4. Discoid or round-scraper; SDR; chert. Discoid-scraper on a core; trimmed, sharp wavy edges round the periphery; roughly flat undersurface flaked completely; upper surface having small platform at the centre is flaked partly by 'Step' technique; upper surface raised at the centre. Stage II. (Plate I, fig. 30).

Irregularly Flaked tool:

The solitary evidence of irregularly flaked tool comes from Matewara. The tool made on a pebble has all the characteristics of Stage I.
MTW; Sandstone. Pebble-tool; flaking on lateral sides forms a sharp, elongated point at the anterior; rest cortexed; sharp, pointed beak-like tip. Used as a point or an awl.
Stage I. (Plate ___, fig. 31).
MIDDLE STONE AGE CULTURE

This small flake-tool culture differs from the chopper-chopping and handaxe-cleaver traditions of the Early Stone Age, so far as the typology, technique and raw material is concerned. Stratigraphically also, they are found to occur in a completely separate horizon at many sites in India. These tools form a distinct cultural tradition completely different from the preceding (Early Stone Age) and succeeding (Late Stone Age) ones.

This culture has been termed as 'Series III', 'Late Soan', 'Series II', 'Middle Stone Age', 'Middle Palaeolithic' and 'Blade and Burin Culture' by prehistorians.

Small flake-tools, fine grained raw material like chert, jasper, agate, chalcedony, opal, and soft cylinder-hammer technique are the characteristic feature of this culture. In all 17 sites yielding Middle Stone Age tools have been found in Bastar. Principal elements, in Bastar, are scrapers, scraper-borer, arrowheads, points, blades, cores and flakes. Majority of the implements are made on small flakes; a few core-tools have also been noticed. Few specimen show retouching and secondary flaking. Tools are retouched mainly from the upper surface which is in most of the cases chipped. Lower surface, in majority of the cases, is clean and flat. A few specimens are beautifully fashioned and well finished.

A very few small hand-axes, including one beautifully trimmed spearhead type, indicate the continuity in between
Early and Middle Stone Age Cultures. It appears that Middle Stone Age people inherited the technique from their ancestors of the preceding culture. Mention may be made of an interesting shouldered tool - a 'tenon-saw'. Two tanged arrow-heads/points also need notice.

Classification and Description of the Tools:

The tools of this period are divided into the following groups:

- Scraper
- Point
- Borer
- Borer-cum-Scraper
- Handaxe, and
- Saw.

SCRAPERS

Scraper predominates the assemblage of the tools. They are divided in the following groups:

(a) Side-Scrappers,
(b) Point-Scrappers,
(c) Round-Scrappers,
(d) Hollow-Scraper,
(e) End-Scraper.

(a) Side-Scrappers:

Side scrapers are divided into two categories:

(i) Scraper-edge on one side,
(ii) Scraper-edge on more than one side,
(i) **Scraping-Edge on One Side Only**:

1. KOT; Chert. **Single-Sided Scraper**; Prominent bulb on flat lower surface; marks of chipping on one lateral side; slope towards working-edge on one of the lateral sides is produced by removing a deep scar from the upper surface; retouched from upper surface; straight, sharp working-edge; thick flat butt. (Plate II A, Fig. 1).

2. KTP, redish jasper; **Convex Scraper**. Arch shaped; working-edge on one of the lateral sides; nearly flat lower surface chipped at working-edge; upper surface raised; flake scars coming down from the raised platform; highly convex; sharp, thin working-edge; flat and thick butt. (Plate II A, Fig. 2).

3. HTL, chalcedony; **Elongated Triangular Side-Scraper**; flat lower surface; upper surface has three deep scars; working-edge on one of the lateral sides is retouched from both the surfaces; truncated ends. (Plate II A, Fig. 3).

(ii) **Scraping-Edge on More Than One Sides**:

1. BMK, Flint. **Double-Sided Scraper**. Roughly straight sides, lower surface flat, chipping restricted at one of the lateral sides; raised upper surface is almost divided into two equal parts by a vertical mid-ridge; one of the lateral sides retouched; thin-sharp cutting edges; truncated butt. (Plate II A) (Fig. 4).
2. PLR; Chert. **Three-Faced Scraper.** Flat under surface, minor working near one of the lateral sides; two big flake-scars on upper surface; lateral sides and anterior retouched; straight sides; one end roughly convex, the other truncated. (Plate II A, Fig. 5).

3. MBT; Chert. **Double-Sided Scraper.** Lower surface flaked; vertical mid-ridge on the raised upper surface; worked from both the surfaces; truncated butt. (Plate II A, Fig. 6).

4. MDT; Fine grain quartzite. **Three-Faced Scraper.** Both surface flaked thoroughly; flat lower surface retains a patch of cortex; slightly ridged upper surface; sharp wavy edges on three faces; moderately thick butt. (Plate II A, Fig. 7).

5. AWD; Chert. **Double-Sided Elongated Scraper.** Flat lower surface bears marking; upper surface has deep flake-scars; worked from both the surfaces; truncated thick butt on one end. (Plate II A, Fig. 8).

(b) **Point-Scraper.**

In this variety scrapers have thick sides and thick unworked point. Though the elongated triangular shape has resemblance with that of a point the specimens cannot be regarded as points because of their thick retouched sides and unworked tips as well.
1. CTK; Chert. **Elongated Triangular Point-Scraper.**
Flat lower surface has marking along lateral sides; upper surface centrally ridged; retouched sides; tip freshly broken; truncated butt; rolled. (Plate 11A, Fig. 9).

2. LDR; Chert. **Elongated Triangular Point-Scraper.**
Few marks of chipping on the flat lower surface; prominent bulb; ridged upper surface has deep scars; retouched lateral sides; unworked broad-thick point; thick butt (Plate 11A, Fig. 10).

(c) **End-Scraper**:

Specimens put in to this group are made on flakes having minutely retouched steep flaring end. Majority of them are retouched from the upper surface, while the under surface is flat. The tool is called "Nose-Scraper" because its scraping-end is steep like a nose. Implements show conventionalised shapes.

1. TVD; Chert. **Typical Nose-Scraper.** Flat lower surface retouched near the working-end; humped upper surface flaked on lateral sides; working-edge made steep by removing three deep flakes at the anterior; flaring working-edge retouched from both the surfaces; elongated butt. (Plate 11A, Fig. 11).

2. SDR; Fine grain quartzite. **Side-cum-end-Scraper.**
Nearly flat lower surface is chipped along lateral sides and anterior; raised upper surface chipped; sharp edge at one of the lateral sides produced by alternate flaking; steep flaring
working-point on anterior bears marks of battering; this two-faced tool served as side-cum-end scraper. (Plate II A, Fig. 12).

3. DPL, Agate End-cum-side-scraper. Unflaked flat lower surface, prominent bulb; upper surface humped at the centre; large flakes removed from anterior and one of the lateral sides; anterior and one lateral side retouched; two-faced tool; used as end-cum-side scraper; thick flat butt. (Plate II A, Fig. 13).

(d) Hollow or Concave-scraper:

The distinctive feature of the scrapers of this group is a concavity on one of the sloping sides. Concave scrapers having more than one working-edges have already been noticed elsewhere. Hollowed edge of the tool is made sharp by oblique retouching.

1. DRG, Chert. Lower surface hollowed by detachng a deep scar; upper surface raised at posterior; lateral sides steepened by flaking; one of the lateral sides hollowed at posterior; both the sides and concavity retouched on both the surfaces; roughly elongated triangular; diffused bulb; thick butt. (Plate II A, Fig. 14).

2. BHJ; Opal, lower surface flat slightly worked, raised upper surface completely flaked; three sides obliquely retouched; one of the lateral sides concave. (Plate II A, Fig. 15).
(c) **Round-Scrapers**

These scrapers made on flattish cores or nodules, retouched obliquely, have the scraping-edge around. These do not have necessarily round shape.

1. VDR, Chart; **Discoid round-scraper**, roughly flattish; obliquely retouched round the periphery from both the surfaces; cortex on both surfaces. (Plate II A, Fig. 16).

2. CTK; Red jasper. **Rectangular round-scraper**. Flat lower surface; sparsely retouched; upper surface flaked leaving a small cortex, minute oblique retouching round the periphery; thin-sharp edges. (Plate II A, Fig. 17).

POINTS

Points, made on flake or nodule include various shapes. Both the lateral sides, or in some cases only working point is retouched. It has been suggested that mid-ridged large points could have served as javelin-tips, whereas small thin points served as arrow-heads.¹ Both, unifacial and bifacial points, can be subdivided into various groups on the basis of bulb and base.² Some tanged points and specimen with finished surface have also been noticed.

In all, seven points have been found, out of which only one, that too tanged is unifacial.

¹ Stone Age Tools, p. 64
² Mahapatra, G.C. : Stone Age Culture of Orissa, pp.106-12
1. **Unifacial point with tang**; DRG, Banded agate. Leaf-shaped point; lower surface flat and unflaked; completely flaked upper surface has a mid-ridge; minute retouching round the edges excepting the tanged posterior; sharp, thin working-edge. A tang produced by flaking to facilitate hafting served as arrow-head. (Plate 21 A, Fig. 18).

2. **Bifacial point with incipient tang**; KLF, Chert. Piano-convex flake; thin, moderately large, leaf-shaped; flat lower surface irregularly retouched round the edge; upper surface centrally ridged; obliquely retouched in the periphery; a crude tang produced deliberately by notching; rolled. (Plate 21 A, Fig. 19).

3. **Bifacial point**; KGT, Chert. Elongated triangular flake; lower surface flat; sparsely worked; upper surface divided into almost two equal parts by a ridge; flake-scars; point and lateral sides retouched; rolled. (Plate 21 A, Fig. 20).

4. GDH, Agate; triangular point; both surfaces nearly flat and worked; lateral sides and point trimmed minutely; truncated base. (Plate 21 A, Fig. 21).

5. KGT; Chert, bifacial leaf-shaped; both surfaces flat and finished; bulb at the base; beautifully trimmed lateral sides and tip; thin, sharp edges. (Plate 21 A, Fig. 22).

6. B30, Chert, elongated leaf-shaped bifacial point; both surfaces flaked, mid-ridge on posterior of the upper surface; point and lateral sides trimmed; thick point; could have been used as javelin-tip. (Plate 21 A, Fig. 23).
BOREB

The body of the borer made on core, flake or nodule may have any sort of shape. But as a rule its thick projecting point has always minute retouching.

1. DGT, quartzite. Roughly elongated triangular; lower surface flattened by removing a large flake; minute retouching at the boring-end; flaked upper surface; posterior cortexed; lateral sides retouched at the anterior and boring end; thick sharp projecting tip. (Plate II A, Fig. 24).

2. GMA, Chert, triangular, lower surface flat; trimmed near the boring-end; upper surface raised; prepared platform; step scars on anterior and one of the lateral sides; thick and blunt tip. (Plate II A, Fig. 25).

3. KTP, Chert; roughly oval, sparsely worked lateral sides and tip; lower surface chipped; upper surface slightly bulging, trimmed boring-tip; the tip is obtained by making notches at one end of the tool; thick blunt tip; rolled. (Plate II A, Fig. 26).

4. CFL, Chert, triangular, flat lower surface, bulging bulb; one of the lateral sides and point trimmed; upper surface completely flaked, mid-ridge thick blunt tip. (Plate II A, Fig. 27).
Borer-scraper is a characteristic tool of Middle Stone Age. A single specimen has been found in the region.

1. KGT, Chert. Thin, roughly rectangular flake; unworked 'clean' lower surface; diffused bulb; slightly raised upper surface; one of the lateral sides concaved by removing a large flake; the boring end is trimmed with two sides; trimming done from the upper surfaces; thin-sharp sides; thin-pointed tip shows two fractures. (Plate II A, Fig. 2B).

HAND-AXE

Three small handaxes have been collected from Bastar. On the basis of size, skill and material they are being put with the Middle Stone Age. Assemblage. As observed above, these hand axes show the continuity in between the present and the preceding cultures.

1. Biconical Hand-axe; KGT, fine grain quartzite. Both the surfaces completely flaked leaving small patches of cortex; trimmed round the periphery on four faces; thin-sharp edges; straight profile. (Plate II A, Fig. 2B).

2. Pear-shaped hand-axe; BasG, jasper; small tool; both surfaces trimmed; thick edges; thick roundish butt; rolled. (Plate II A, Fig. 30)

* Stone Age Tools, p. 63.
The common in the succeeding culture, saw is rarely noticed in Middle Stone Age Culture. The specimen described below needs special reference because of its prolonged butt-end forming a shoulder.

Tenon-Saw

GDH; Chert, lower surface flat; trimming at the working edge; diffused bulb; raised upper surface flaked in a fashion to provide steep working-edge; broad saw-like working-edge retouched obliquely; butt sharply cut from both of its sides to provide a shoulder to anticipate haft; thick butt. (Plate II A, Fig. 31)

The implement has a resemblance with that illustrated by Dr. Sankalia (Stone Age Tools, p. 88, Fig. 106.
SECTION : IV

LATE STONE AGE CULTURE

The presence of microlithic industry in Bastar was noticed by Dr. Krishnaswami in 1952*. Excepting a few microliths collected from Chitrakuta no evidence of Stone Age Cultures was brought to light from the region. As a result of the author's explorations a number of microlithic sites, though comparatively small, have been noticed.

The microlithic industry of Bastar is non-geometric in character. Barring a few fine grained specimens majority of the raw material used is medium grained. It is comprised of chert, jasper, opal, quartzite, quartz, gunflint and chalcedony. Specimen on chalcedony occur rarely.

Collected from the river bed and surface they can be placed chronologically and stratigraphically as well after the Middle Stone Age. Blades are short and few in number. The workmanship is not very commandable. Majority of the tools are not fresh. In all 53 implements have been collected from nine sites.

Classification and Description of the Tools:

The following is the classification and description of different tool types:

1. Core

* Krishnaswami, V.D., 'Prehistoric Bastar', op.cit.
2. Blade
 (a) Simple
 (b) Backed
 (c) Straight sided

3. Point

4. Scraper
 (a) Side-scraper
 (b) Point-scraper
 (c) Hollow-scraper
 (d) Round-scraper

5. Zinken
6. Flake.

1. CORE:

 Only six cores have been collected from Bastar region. One of them is roughly pointed; rest are flat based and fluted. All but one – conical – are made on cylindrical nodules. In two of the specimens the flakes are removed from one surface, while others are flaked all round. Flat-based cores present invariably, regular and parallel flake-scars. The specimens are struck-off from either one or both the ends.

 1. CTK; Chert, small conical core; flaked all round leaving the base; flake scars convergent; crested ridge produced by alternate flaking; small blades removed (Plate II, Fig. 1).

 2. GCD; Chert; cylindrical nodule; flaked all round; redish cortex at one side and one of the ends; both ends flat;
roughly parallel-sided flakes detached; struck from both the ends. (Plate II, Fig. 2).

3. GDR; Opal; long cylindrical nodule; flaked all around; struck from both the flat ends; large, straight flake scars. (Plate II, Fig. 3).

4. B8G; quartz; fluted and roughly cylindrical; four thin flakes removed from upper surface; lower surface cortexed; snapped flat ends. (Plate II, Fig. 4).

5. VDR; Chalcedony; small cylindrical nodule; convergent flaking on upper surface; lower surface bears irregular scars; one end roughly flat, the other conical. (Plate II, Fig. 5).

2. BLADE:

Once detached from the core, blades were further trimmed to various shapes. Parallel-sided blades are the commonest implements of this assemblage. These blades with retouched, or sometime plain, sides, were ordinarily used with hafts. They can be subdivided into following types:

(a) Simple Blades:—Though blades put into this variety are parallel sided, they do not show mark of retouch or use.

1. CTK; red jasper; parallel-sided; lower surface nearly flat, diffused bulb; one lateral side on the upper surface flaked, rest cortexed; mid-ridge; no retouching. (Plate II, Fig. 6).
2. ALJ; fine grain quartz; moderately long parallel-sided blade; flat lower surface; vertical flake scars on upper surface; no mark of retouching; one end truncated, other roundish. (Plate III, Fig. 7).

(b) Backed or blunted - back blades:

1. BS9; mossy chalcedony; lower surface 'clean'; upper surface shows a ridge parallel to the blunted edge. The edge blunted by retouching is produced to facilitate hafting; blunted edge gradually tapers in to a point; the other straight edge is sav-like; narrow snapped end. (Plate III, Fig. 8).

2. TED; quartz; roughly parallel sided thick blade; thick edge blunted by trimming; other edge unworked; lower surface 'clean'; upper surface pointed; both ends sharp and thin. (Plate III, Fig. 9).

(c) Straight-sided blade:

The single straight-sided and double straight-sided blades are comprised in this variety.

1. Single straight sided blade; CLC; fine grain quartzite; lower surface 'clean'; flaked upper surface; one thick edge unworked, the other thin edge trimmed; two ridges running parallel to the edges. (Plate III, Fig. 10).
2. Double straight-sided blade; ODH; carnelian; double edged; roughly parallel sided; lower surface 'clean'; flaked upper surface is centrally ridged; both lateral sides retouched. (Plate II B, Fig. 11).

3. Roughly double straight-sided blade; CTK; quartz; paralleled sides; both edges trimmed; slightly chipped lower surface; bulb; upper surface flaked. (Plate II B, Fig. 12).

POINT:

Majority of points, made on flakes, are triangular or roughly triangular in shape. In all five specimens have been collected. One unilateral point - a rare tanged specimen - deserve notice.

1. CTK; red jasper; nearly triangular; lower surface flat, marks of chipping; upper surface divided into two equal parts by a vertical mid-ridge; both lateral sides and point trimmed; sharp thin edges; fresh fracture on one of the lateral sides; snapped base. (Plate II B, Fig. 13).

2. GLO; fine grain quartzite; triangular lower surface unworked; prominent bulb; upper surface flaked; tip and one of the lateral sides trimmed; thin-sharp edge; moderately thick tip. (Plate II B, Fig. 14).
3. OLG; quartzite; elongated point; lower surface flat; small scar at the posterior; raised upper surface; long flake removed from the humped centre; trimmed at the anterior; worked tip. (Plate II 12, Fig. 15).

4. Tanged unilateral point:

CTK; red jasper; scalene triangle; lower surface 'clean'; prominent bulb at the tang; upper surface completely flaked; one thick lateral side unworked, the other convex side is minutely retouched; tapering towards the point; deliberate tang produced by two notches; sharp lateral edge and tip; could be used as arrowhead. * (Plate II 12, Fig. 15).

Scraper:

Scrapers of various types have been collected from this region. These are subdivided according to their scraping-edges.

Side-Scraper:

Only two specimens having working-edge on more than one sides have been noticed.

1. ODH; black jasper; elongated triangular; lower flat surface sparsely chipped; upper surface divided by a mid-ridge; trimmed at three faces; roughly straight lateral sides. (Plate II 12, Fig. 17).

2. AJL; Opal; roughly oval; both surfaces flaked; lateral sides trimmed alternately; ridged surfaces; sharp edges; both ends snapped. (Plate II B. Fig. 18).

Point-Scraper

As observed earlier, this sort of scraper resembles in shape with the point. The only difference with the point is that its tip is unworked and sides are retouched. Point essentially has trimmed tip. Specimen, put in to this group, bear marks of trimming on lateral sides. It shows that the sides are essentially fashioned to scrap.

1. CLG; agate, elongated triangular; lower surface has few marks on lateral sides; raised upper surface; mid-ridge vanishing at the anterior; lateral sides trimmed; pointed, unworked tip. (Plate II B. Fig. 19).

Hollow-Scraper

Hollow scrapers having more than one working-edge have been found in Bastar. Concavity obtained by removing flakes is made effective and sharp by minute trimming.

1. BSG; quartz; double convex hollow-scraper; flat lower surface slightly retouched on three faces; upper surface humped; both the sloping lateral sides concaved at the centre by notching; sort of waist formed by notching on both the lateral sides; roughly rectangular. (Plate IV B. Fig. 20).
2. GKT; gunflint; rectangular; round-sun-hollow-scraper; marks of chipping round the periphery at the lower surface; upper surface raised at posterior; prepared platform; deep flake-scar sloping towards anterior; trimmed alround; edge at the hollowed-end trimmed minutely; the concavity sharpened by retouching. (Plate III B, Fig. 21).

3. CTK; red jasper; lower surface flat; upper surface flaked; one of the lateral sides trimmed; concavity obtained by removing a deep scar from the upper lateral side; other sides thick. (Plate III B, Fig. 22).

4. GKH; black jasper; trimming on one of the lateral sides at the lower surface; upper surface raised; one lateral side has natural concavity which is retouched from both the surfaces; other side thick and unworked; thick ends. (Plate III B, Fig. 23).

Round-Scrapers:

The solitary evidence of hollow-scraper comes from Chitarkuta. The tool described under the head hollow scraper (Plate II B, Fig. 20) may be put into this group.

CTK; red jasper; circular flattish small core; lower surface 'clean', prominent bulb; upper surface flaked; trimmed round the periphery; thin sharp edges. (Plate II B, Fig. 24).
ZINKEN:

Zinken is a typical tool having thick beak-shaped curved point with deep notches near the tip. According to A. Bohmers Zinken is meant for dressing bones and antlers. These were used for scraping flesh from bones also.**

1. GLG; red jasper; Zinken; lower surface clean; diffused bulb; upper surface chipped; one of the lateral sides cortexed; the edge on other lateral side formed by removing a large deep flake; retouched edge; deep notches near the tip; curved-beak shaped tip; other end snapped. (Plate 13, Fig. 23).

2. GDH; Chert; triangular tool with beak-shaped projection; unworked bulging lower surface; trimmed from the upper surface; working-edge on one of the lateral sides obtained by removing a large deep flake; minutely trimmed edge curved near the tip forms a beak-like projection; deep notches at tip portions remaining two thick faces blunted by backing. (Plate 13, Fig. 23).

* A. Bohmers on 'A Statistical analysis of flint artifacts' in (ed) Brothwell and Higgs. Science in Archaeology, pp. 469-81

** Pappu, R.S., 'Explorations of Prehistoric Sites in District Bijapur', Purakatika, No. 4, pp. 59-60; Figs. 1,2.
SECTION : V

NEOLITHIC CULTURE

The Neolithic culture, the last phase of the Stone Age, had relatively developed economy. As this culture acquired, in its later phase, the metal tools, pottery and other items of material culture from the neighbouring communities, it has seen a round development. Though, the economy of these people continued to depend on stock-raising, a sort of primitive agriculture also formed a part of it. This has been attested by the evidences gathered from excavations at Neolithic sites. Sheep, goat, buffalo, cattle, ass and horse tribe were being domesticated during the period. Their bones have been reported from Hallur, Mashi, Kodekal, Piklihal, Utnur, Tekkalkote and Kile Gul Mohammed. Two terracota figurines of humped bull have been reported from the Neolithic levels at Piklihal.

The plant remains obtained from the Neolithic sites like Hallur,9 Tekkalkota,10 Maski,11 and Utnur12 indicate that both cereals and pulses were cultivated during the Neolithic period.

The \textit{Mirnatas} (ܡܪܝܢܐ) of the Neolithic culture had to give up the Nomadic character as they were persuaded by the changed economy to remain constantly close to the domesticated animal and cultivation fields. For habitation they preferred such hills which had plateaux on the tops or shoulders over looking their fields. On the nonavailability of flat hill-tops they settled on the levelled terraces at the hill slopes.

Apart from making use of the natural rock-shelters on these hills, small huts were also erected by them. Hill-tops were deliberately chosen for settlement keeping in view the safety from Carnivoras.13 Their settlements were ordinarily

10 \textit{Ibid.}, p. 129

12 Allchin, F.R., \textit{op. cit.} (1961).

enclosed by large stones. It is apparent that this enclosing was a protective measure against the invading enemies too. High hills provided additional defence to the inhabitants. It may be assumed that the Neolithic tribes invaded each other for capturing animals, stored grains, enclosed habitational land and women. Rock-paintings and engravings executed close to their settlements have been reported from many sites in India.

Stone-Tools also suggest advancement in tool-technique. The tools, fashioned out of the requirements, show their advance economy. Ground axes, serrated blades, stone-rings and lunates were used in agriculture, while querns, millers and pounders were fashioned for grinding and pounding the food-grains. Some implements also occurred at some Neolithic sites.

The Stone Tools were prepared in four stages namely -
1. designing the shape, 2. pecking, 3. grinding, and 4. polishing.

Worman, Sankalia and Dani have classified the Neolithic tools in too many categories.

14 ...at Tekkalkota we had the definite evidence that they moved large stones and enclosed the periphery of the hills where there were no natural stones affording such privacy.; Sankalia, R.D.; Beginning of Civilization in South India; Science today, April 1968, p. 33.

16 Only three stages have been recognised by majority of the scholars. Dr. Sankalia recognising the fourth stage (Stone Age Tools, pp. 81-82) has given an explanation to it.

18 Sankalia, R.D., Stone Age Tools (Poona) 1964, pp. 82-88.

The distinctive regions of the Neolithic culture, labelled as 'Northern', 'Eastern' and 'Southern', have been further subdivided amounting in to six geographical regions.

Besides a Neolithic settlement on the hill-top near village Garhachandella only three Neolithic tools have been discovered in Bastar district. The Neolithic settlement at Garh Chandella is located on the flat top of 300 meter high hill measuring 500 x 100 meters. The settlement, extended roughly in 100 x 100 meter area is, enclosed by stone walls from three sides. The Eastern end of the settlement is narrower measuring only 35 M. at its width. The gradual slope of the hill at this end provides relatively easy access. Hence, this end is provided with additional defence by erecting a 35 M. wide, 05 M. high, and 02 M. thick wall which is made of huge boulders perched one on another. About one metre high, half meter thick and 100 meter long stone-wall can be seen running east-west on both the lateral sides at the periphery. A small artificial pond was dug by the inhabitants on the west of their settlement. Crescents, long and serrated blades and unfinished neolith have been collected from this stone-encircled area.

20 Thapar, B.K., Problems of the Neolithic cultures in India: a retrospect; Puratattva, No. 7 (1974) pp. 61-62.

Conspicuously the absence of rock-painting from the vicinity is noticed.

Classification and description of the tools:

In all only three neolithic tools have been collected from this region.

Fully ground celt:

DPL; basalt; elongated triangular, huge celt; fully ground; lower surface flat; thick-broad and convex cutting edge; roughly rounded lateral sides; pointed butt. (Plate III, fig. 1).

Unground small celt:

USR, roughly ovoid small celt; both surfaced packed; marked absence of grinding; thin and sharp cutting edge; thin lateral sides; roundish butt-end; fresh fracture at the butt-end. (Plate III, fig. 2).

Small muller or celt:

GCD; Basalt; triangular; lower surface flat; upper surface very slightly convex; ground lower surface has two small circular incisions; marks of grinding on lateral sides at the anterior; rough upper surface; either a small plano-convex muller or roughout of a small celt. (Plate III, fig. 3).
MEGALITHIC MONUMENTS IN BASTAR

Megalithic monuments of Indian territory have been grouped into three distinct zonal: The Peninsular megaliths; the tribal megaliths of middle India and Assam; and the megaliths of Rajasthan and U.P.¹ the nature of South Indian megalithic culture has been known through excavations conducted in that part of the country. A few excavated Central Indian and U.P. - sites have revealed the antiquity and cultural pattern of the megalithic people.

The source of Indian megaliths is a matter of controversy among the scholars. According to Haimendorf, the megalithic culture of Assam, Chhota Nagpur and Orissa belong to the South East Asia.² Krishnaswami opines that the South Indian megaliths, though of a different origin, possess some features of the South East Asiatic culture.³ In view of Walter Ruben, Central Indian megaliths have western origin. The culture reached India through Palestine and Persia.⁴ The findings of Banerjee,⁵ Heine Geldern⁶ and Leshnik⁷ suggest that Baluchi

¹ Ramchandran, K.S., 'Megalithic zones in India', Prof. K.S. Nālakantha Sastry 80th Birthday Felicitation Volume, Madras, 1961, pp. 244-54.
³ Krishnaswami, V.D., Megalithic types of South India, Ancient India, No. 5, p. 42.
⁴ Ibid.
⁵ Banerjee, N.R., The Iron Age in India (New Delhi 1965), pp. 42
⁶ Ibid., p. viii, Foreward.
cairns gave rise to the Indian megalithic complex. Recently S.P. Gupta has elaborated the Gulf of Oman theory. According to him, megaliths came to India in more than one wave from Oman through sea along the Makran coast. Ramachandran maintains that the people who performed a high sea-journey from Red sea to the Western ghats were responsible for the birth of Indian megaliths.

A number of megalithic monuments have been discovered in Southern Bastar by the author. The writings of Grigson and Elwin present a picture of funerary customs prevalent among the Maria Gonds of Bastar. On the basis of these observations Krishnaswami states that the megalithic monuments of Bastar are the examples of living megalithic culture. Certainly, the Maria Gonds of Bastar erect the memorial pillar along with the dolmens to their dead. These dolmens are known as DANYAKAL. They put earthen ware, dry fish, tobacco and certain roots near these monuments in the form of grave-furniture. The investigations, conducted by the author, yielded that a marked tendency to install a carved wooden pillar, instead of stone-relics,

8 Gupta, S.P., Gulf of Oman: 'The Original home of Indian Megaliths', Puratattava, No. 4.
10 Ramachandran, K.S., ; Gulf of Oman: Original home of the Indian Megaliths A Reappraisal; Puratattva, No. 6, pp. 22.
12 Elwin, V., 'Funerary Customs in Bastar State'. Man in India, XXV, p. 112 ff.
13 Krishnaswami, op. cit., p. 41.
developed during the first quarter of the 20th century. During the past two decades plain wooden pillar and ordinary chiselled monolith have replaced dolmens and carved wooden pillars. A few cement-pillars with painting executed on them have come up very recently by bruising aside the ancient traditions. 14

In fact, the true megaliths of Bastar, relatively small in number, can very well be placed into the pre-christian era. Some of these, discovered by the author, in remote pockets, represent all characteristics of the early megalithic culture. Apparently, antiquity of these monuments in Bastar can not be established unless these are properly excavated. Some of the sites bearing megalithic monuments are: Timmēlwādā, Nelākānker, Sankānpālī, Karkēlī, Vedrē, Handagūdā, Irpā, Gongpāl, Pālnār and Bachēlī. All of these sites, excepting the last mentioned, have been discovered by the author. The existence of megalithic monuments at Bachēlī was intimated by my friend Mr. V.B. Pandaya, the then Malaria Officer, Jagadalpur.

The monument at Timmēlwādā, situated at the distance of 20 kms. from Dornāpāl in Konta tahsil, represents a large dolmenoid cist. A cap stone is set on the top of four Orthostatic stones. The major part of the monument is sunk under-

14 A cement-pillar with painted motifs of birds and bow-man in village Kondrī is one of the best examples. Kondrī is a small village, located at the distance of 35 km. from Geedām on Bijāpur road. A few such pillars can also be seen near village Tumār.
ground, rising hardly one foot above the ground. The flat capstone is not at all dressed. Gap between the Orthostats can be seen. Other monument of the same character, exist near this dolmen. (Plate 1 fig. A).

The megalithic monument located at the distance of one km. from Nelakanker on Pujarikanker forest road in Bijapur tahsil, needs special attention. Here, a well dressed small Menhir exists in the middle of the forest. This intact monuments seems to be earlier than that of Timnelwada.

Sankanpalli, Karkeli and Vedre situated on Naired-vedre (via Kutru) forest-road in Bijapur tahsil, have dolmens and Menhirs. Menhirs alongwith small dolmens of relatively later period can be seen at Sankanpalli. Menhirs, dolmens and cairn-circles have been noticed at Karkeli, 17 kms. from Kutru, the head quarter of the old Kutru Zamindari. Some monuments at Karkeli are of recent origin, while others belong to a distant past. One of the dolmens and the memorial-pillar having dressed cap-stone seems to be a little later. Others, devoid of memorial pillar and dressed cap-stone seem to belong to the earlier phase. Cairn-burials are in a devastated state. (Plate 1 fig. B).

Handaguda, in Abujhar hills near Barsur, has dolmens and Menhirs. Megalithic dolmens and Menhirs discovered at Palnar are situated 10 km. South to village Gongpal. Gongpal has yielded Menhirs.
Dolmens and Cairn-circles have been noticed on a higher ground near village Irpa, located in between Kodenar and Bastanar on Jagdalpur - Geedam road.

Mention may be made of an interesting structure on a 200 meter high hill, located at the distance of 04 kms. from Vedre. Vedre situated on the verge of Abujhmar hills in South-Western Bastar, is 21 kms. West to Kutra. The monument may not be a true megalith, but, it contains certain features of megalithic structure. The possibility of ascribing the monument to the Neolithic culture cannot be rejected altogether.

A cave along with an area of roughly 50 Sq. Meters has been found enclosed with stone-blocks on the top of the hill. A huge upright stone-block can be seen on the side of the cave. The top-end of this upright block is flat. It is yet to be determined whether the flat top-end is natural, or it has been snapped. The monument located amidst impenetrable forest is practically inaccessible.

In fact, the nature of the relic - stone encircled cave - suggest it to be of Neolithic phase. But, the huge upright block with snapped top end is indicative of megalithic character. (Plate \[, fig. C).

At the present state of our knowledge, it would be premature to form an opinion about the nature of the megalithic culture in Bastar. It may be conjectured that these may go with the South Indian megalithic complex.