Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>Synopsis</td>
<td>viii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Biology of Neurospora
1.2 Natural Neurospora populations
1.2.1 Classification and habitat
1.2.2 Genetic diversity in natural populations of Neurospora
1.3 Gene silencing mechanisms in filamentous fungi
1.3.1 Repeat-induced point mutation (RIP)
1.3.2 RIP in other fungi
1.3.3 Methylation induced premeiotically (MIP)
1.3.4 Quelling
1.3.5 Meiotic silencing by unpaired DNA (MSUD)
1.4 Objective of this work

2 MATERIALS AND METHODS

2.1 Materials
2.1.1 Source of chemicals and materials used
2.1.2 Strains
2.1.3 Culture media and solutions
2.2 Methods
2.2.1 Growth conditions and crosses
2.2.1.1 Vegetative growth
2.2.1.2 Crosses
2.2.2 Scoring for RIP efficiency
2.2.3 Isolation of genomic DNA from *N. crassa*
2.2.4 Polymerase Chain Reaction
2.2.5 Preparation of radiolabelled DNA probe
2.2.6 Southern hybridization
2.2.7 General methods
2.2.7.1 Agarose gel electrophoresis
2.2.7.2 Purification of DNA fragments from LMP-agarose gels
2.2.7.3 Quantitation of nucleic acids
2.2.7.4 Sephadex G-50 column chromatography

3 SCREENING OF WILD-ISOLATED *NEUROSPORA CRASSA* STRAINS FOR DOMINANT SUPPRESSORS OF RIP

3.1 Introduction
3.2 Results
3.2.1 Screening for dominant RIP suppressors
3.2.2 Double-blind experiments
3.2.3 Is RIP responsible for the barren phenotype caused by segmental aneuploidy?
3.3 Discussion

4 GENETIC ANALYSIS OF THE BARREN DOMINANT RIP SUPPRESSORS

4.1 Introduction
4.2 Results
4.2.1 Segregation of the suppressor phenotype in the *f*₁ progeny of the Sugartown strain
4.2.2 Additional evidence for a duplication in the Sugartown strain
4.2.3 Linkage mapping of the barren phenotype of the Sugartown strain
4.2.4 Segregation of the suppressor phenotype in the *f*₁ progeny of the Golur-1 strain
4.2.5 Effect of Sad-1 mutant on the barren phenotype of wild strains 56
4.2.6 Is the barren phenotype of Georgetown-6 strain (P2622) associated
with a dominant RIP suppression phenotype? 59
4.2.7 Test for the presence of a Sad-1-like mutation in a subset of
wild strains 62
4.3 Discussion 63

5 GENETIC ANALYSIS OF THE NON-BARREN DOMINANT
RIP SUPPRESSORS 65
5.1 Introduction 65
5.2 Results 66
5.2.1 Genetic basis of the dominant suppression of RIP by the strain
Adiopodoume-1 (FGSC # 430) 66
5.2.2 Recessive infertility factors in the Adiopodoume-1 strain 73
5.2.3 Does infection by Tad affect RIP? 73
5.2.4 Genetic basis of the dominant suppression of RIP by the strain
Adiopodoume-7 (P4305) 76
5.2.5 Genetic analysis of the dominant suppression of RIP by the strain
Bayan Lepas (P2663) 79
5.2.6 Genetic basis of the dominant suppression of RIP by the strain
Coon (P0881) 79
5.2.7 Genetic basis of the dominant RIP suppression by the strain
Fred (P0833) 82
5.3 Discussion 87

CONCLUSION AND FUTURE PLANS 89
REFERENCES 91
PUBLICATIONS 102