Chapter 1. INTRODUCTION

1.1 Introduction 1

1.2 Motivation and Principal Objectives 1

1.2.1 Shape Optimization 2

1.2.2 Topology Optimization 2

1.2.3 Integrated shape and Topology Optimization 3

1.3 Classification of Structural Optimization problems 3

1.3.1 Classification based on mode of behavior 3

1.3.2 Classification based on type of design variables 4

1.3.3 Classification based on structure type 4
1.4 Optimization problem Definition
1.4.1 Mathematical description of optimization problem
1.4.2 Design variables
1.4.3 Objective function
1.4.4 Constraints
1.5 Structural shape definition
1.6 Structural thickness definition
1.7 Structural topology definition
1.8 Structural Analysis
1.9 Layout of the thesis
1.10 Note on dimensions and units

Chapter 2 REVIEW OF LITERATURE ON STRUCTURAL OPTIMIZATION

2.1 General perspective
2.2 Literature Review
2.2.1 Thickness/Shape optimization
2.2.2 Topology optimization
2.2.3 Integrated Topology and shape optimization

Chapter 3 THICKNESS AND SHAPE OPTIMIZATION

3.1 General perspective
3.2 Thickness/Shape optimization theory
3.2.1 Mathematical programming Methods or
Gradient- based methods

3.2.2 Thickness Changing methods

3.2.3 Gradient-less methods

3.2.4 Lagrangian Approach or Boundary Changing method

3.2.5 Genetic Algorithms

3.2.6 Present Approach

3.2.6.1 Sub-problem Approximation Method

3.2.6.2 Approximations

3.2.6.3 Conversion to an Unconstrained Problem

3.2.6.4 Convergence Checking

3.3 Algorithm for Shape optimization

3.4 Mathematical statement of the structural optimization problem

3.5 Design variables

3.6 Objective functions considered in thickness/shape optimization

3.6.1 Minimizing the volume

3.6.2 Minimization of strain Energy

3.6.3 Maximization of fundamental frequency

3.8 Illustrative Example 1- Inverse Models

3.8.1 General

3.8.2 Validation of the inverse model in ANSYS (for
2x2 mesh size

3.8.2.1 General finite element formulation (for a 2 x 2 mesh)

3.8.2.1.1 Geometry

3.8.2.1.2 Expression for w (displacement)

3.8.2.1.3 Expression for strains and curvature

3.8.2.1.4 Elasticity Matrix

3.8.2.1.5 Element stiffness matrix

3.4.3 Problem definition

3.4.4 Initial geometry and Generation of Inverse models

3.4.4.1 Thickness function

3.4.5 Boundary conditions considered

3.4.6 Volume minimization as objective

3.4.6.1 Discussion of Results

3.4.7 Strain Energy minimization as objective

3.4.7.1 Discussion of Results

3.4.8 Fundamental frequency Maximization

3.4.8.1 Discussion of Results

3.9 Illustrative Example 2 - Cylindrical Shells

3.9.1 General

3.9.2 Problem definition
3.9.3 Initial Geometry

3.9.4 Boundary conditions considered

3.9.5 Volume minimization as objective

3.9.6 Discussion of Results

3.9.7 Fundamental frequency Maximization

3.9.8 Discussion of Results

3.10 Illustrative Example 3- Prismatic shells-1 (Box girder section straight in plan)

3.10.1 Problem definition

3.10.2 Geometry

3.10.3 Initial Shape

3.10.4 Structural Analysis

3.10.5 Discussion of Results

3.11 Illustrative Example 4- Prismatic shells-2 (Box girder section curved in plan)

3.11.1 Problem definition

3.11.2 Geometry

3.11.3 Initial Shape

3.11.4 Structural Analysis

3.11.5 Discussion of Results
Chapter 4 **TOPOLOGY OPTIMIZATION**

4.1 Introduction

4.2 Topology Optimization-Theory
 4.2.1 Homogenization method or Density method
 4.2.2 Performance Topology Optimization method
 4.2.3 Method of moving asymptotes(MMA)
 4.2.4 Optimality criteria method
 4.2.5 Sequential Convex programming
 4.2.6 Level set method
 4.2.7 Genetic Algorithms
 4.2.8 Morphological Genetic algorithm

4.3 General topology Optimization Problem Statement

4.4 Maximum Static Stiffness Design

4.5 Maximum Dynamic Stiffness Design

4.6 Weighted Formulation

4.7 Element formulation

4.8 Topology Optimization-Numerical Examples
 4.8.1 Illustrative Example 1-Cantilever Beam
 4.8.1.1 Problem definition
 4.8.1.2 Initial Geometry
 4.8.1.3 Structural Compliance Minimization as objective
4.8.1.4 Discussion of Results

4.8.2 Illustrative Example 2-Deep Beam Problem

4.8.2.1 Problem Definition

4.8.2.2 Initial geometry

4.8.2.3 Structural Compliance Minimization as objective

4.8.2.4 Discussion of Results

4.8.3 Illustrative Example 3-Bridge Pier Problem

4.8.3.1 Problem Definition

4.8.3.2 Initial Geometry

4.8.3.3 Discussion of the Results

4.8.4 Illustrative Example 4-Inverse Shell Models

4.8.4.1 Problem Definition

4.8.4.2 Objective functions

4.8.4.3 Initial Geometry

4.8.4.4 Discussion of Results

4.8.4.4.1 Corners fixed

4.8.4.4.2 Corners simply supported

4.8.4.4.3 Edges fixed

4.8.4.4.4 Edges simply supported

4.8.5 Illustrative Example 2-Cylindrical shells

4.8.5.1 Problem definition
Chapter 5 INTEGRATED THICKNESS, SHAPE AND TOPOLOGY OPTIMIZATION

5.1 General perspective
5.2 Integrated shape and topology optimization - Theory
Algorithm for Integrated thickness/Shape and topology optimization
5.3 Illustrative examples
5.4 Illustrative Example 1 - Inverse Shell Models
5.4.1 Problem definition
5.4.1.2 Objective functions
5.4.1.3 Initial Geometry
5.4.1.4 Discussion of Results
5.4.1.4.1 Corners fixed
5.4.1.4.2 Corners simply supported
5.4.1.4.3 Edges fixed
5.4.1.4.4 Edges simply supported
5.4.2 Illustrative Example 2 - Cylindrical Shells
5.4.2.1 Problem definition 120
5.4.2.2 Initial Geometry 120
5.4.2.3 Results and Discussions 121

5.4.2.3.1 Shell supported on right edges 121
5.4.2.3.2 Shell supported on curved edges 122
5.4.2.3.3 Shell supported on four edges 122

Chapter 6 CONCLUSIONS

6.1 General 133
6.2 Conclusions 133

6.2.1 Thickness/Shape optimization 134
6.2.2 Topology Optimization 136
6.2.3 Integrated Thickness/Shape and Topology Optimization 137

6.3 Recommendations 138
6.4 Further scope of Research 138

Chapter 7 REFERENCES

7.1 Review papers 140
7.2 Technical papers 142

7.2.1 Thickness/Shape Optimization 142
7.2.2 Topology Optimization 156
7.2.3 Integrated Shape and Topology 167
Optimization

7.3 Master’s/Ph.D. thesis 170

7.4 Textbooks 172