LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>% Extraction of 0.001 M Ce (III) from 0.01 M HNO$_3$ and 1.0 M KNO$_3$ using 0.1 M Cyanex 921 against equilibration time.</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>% Extraction of 0.001 M Ce (III) from 1.0 M KNO$_3$ using 0.1 M Cyanex 921 against [HNO$_3$], M.</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>log D against log [NO$_3^-$] for the extraction of 0.001 M Ce (III) from 0.01 M HNO$_3$ using 0.1 M Cyanex 921.</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>log D against log [Cyanex 921] for the Ce (III) extraction from 0.01 M HNO$_3$ and 1.0 M KNO$_3$.</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>log K_{ex} against 1000/T for the extraction of Ce (III) from 0.01 M HNO$_3$ and 1.0 M KNO$_3$ using 0.1 M Cyanex 921.</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>% Extraction against [Ce (III)], M in the extraction from 0.01 M HNO$_3$ and 1.0 M KNO$_3$ using 0.1 M Cyanex 921.</td>
<td>53</td>
</tr>
<tr>
<td>3.7</td>
<td>% Extraction of 0.001 M Ce (III) from 0.01 M HNO$_3$ and 0.2 M KNO$_3$ using 0.1 M Cyanex 921 against phase volume ratio (O/A).</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>% Extraction of 0.001 M Ce (III) from 0.01 M HNO$_3$ using 0.1 M Cyanex 921 against [NO$_3^-$]$_o$, M.</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>% Stripping against [stripping agent], M for recovery of Ce (III) from loaded organic phase with 0.2 M Cyanex 921.</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>% Extraction against equilibration time for extraction of Ce (III) from 0.01 M HNO$_3$ and 1.0 M KNO$_3$ using 0.1 M Cyanex 923.</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>% Extraction against [HNO$_3$], M for extraction of Ce (III) from 1.0 M KNO$_3$ using 0.1 M Cyanex 923.</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>log D against log [NO$_3^-$] for the extraction of Ce (III) from 0.01 M HNO$_3$ using 0.1 M Cyanex 923.</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>log D against log [Cyanex 923] for the extraction of Ce (III) from 0.01 M HNO$_3$ and 1.0 M KNO$_3$.</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>log K_{ex} against 1000/T for extraction of Ce (III) from 0.01 M HNO$_3$ and 1.0 M KNO$_3$ using 0.1 M Cyanex 923.</td>
<td>68</td>
</tr>
</tbody>
</table>
4.6 % Extraction against [Ce (III)], M for the extraction from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.1 M Cyanex 923.
4.7 % Extraction of 0.001 M Ce (III) extraction from 0.01 M HNO₃ and 0.2 M KNO₃ using 0.1 M Cyanex 923 against phase volume ratio (O/A).
4.8 % Stripping against [stripping agent], M for recovery of Ce (III) from loaded organic phase with 0.4 M Cyanex 923 in kerosene.
5.1 % Extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using 0.4 M PC 88A against equilibration time.
5.2 log D against log [HNO₃] for extraction of Ce (III) using 0.4 M PC 88A.
5.3 log D against log [PC 88A] for the extraction of Ce (III) from 0.001 M HNO₃.
5.4 log Kₑₓ against 1000/T for the extraction of Ce (III) from 0.001 M HNO₃ using 0.4 M PC 88A.
5.5 % Extraction against [Ce (III)], M on its extraction from 0.001 M HNO₃ using 0.4 M PC 88A.
5.6 % Extraction of Ce (III) from 0.001 M HNO₃ using 0.4 M PC 88A against phase volume ratio (O/A).
5.7 % Stripping against [stripping agent], M for the recovery of Ce (III) from loaded organic phase with 0.7 M PC 88A.
6.1 % Extraction against equilibration time for the extraction Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336] [NO₃⁻].
6.2 % Extraction against [HNO₃], M for the extraction of Ce (III) from 3.0 M KNO₃ using 1.0 M [A336] [NO₃⁻].
6.3 log D against log [NO₃⁻], for the extraction of 0.001 M Ce (III) from 0.01 M HNO₃ using 1.0 M [A336] [NO₃⁻].
6.4 log D against [A336] [NO₃⁻] for the extraction of 0.001 M Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃.
6.5 log Kₑₓ against 1000/T for the extraction of 0.001 M Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336] [NO₃⁻].
6.6 % Extraction against [Ce (III)], M for its extraction from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336] [NO₃⁻].
6.7 % Extraction against phase volume ratio (O/A) for the extraction of Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336] [NO₃⁻].

7.1 % Extraction against equilibration time for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.2 % Extraction against [HNO₃], M for the extraction of Ce (III) from 1.0 M KNO₃ using 0.04 M Cyanex 921, 0.04 M Cyanex 923 and mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.3 log D_{mix} against log [NO₃⁻] for the extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.4 log D_{max} versus log [Cyanex 921/Cyanex 923] for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃.

7.5 % Extraction against [Cyanex 921/Cyanex 923], M for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃.

7.6 log K_{ex} against 1000/T for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.7 % Extraction against [Ce (III)], M on its extraction from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.8 % Extraction against phase volume ratio (O/A) for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.9 % Extraction against [NO₃⁻], M for the extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.10 % Stripping against [stripping agent], M for the recovery of Ce (III) from loaded organic phase with 0.2 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.11 % Stripping against [stripping agent], M for the recovery of Ce (III) from loaded organic phase with 0.04 M Cyanex 921 and 0.2 M Cyanex 923 in kerosene.
8.1 % Extraction against equilibration time for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921.

8.2 log D_{mix} versus log [HNO₃] for the extraction of 0.001 M Ce (III) using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.3 log D_{mix} against log [NO₃⁻] for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.4 log D_{mix} against log [Cyanex 921] for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.1/0.2 M PC 88A in kerosene.

8.5 log D_{mix} against log [PC 88A] for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using 0.1 M Cyanex 921 in kerosene.

8.6 log K_{ex} against 1000/T for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.7 % Extraction against [Ce (III)], M on its extraction from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.8 % Extraction against phase volume ratio (O/A) for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.9 % Stripping against [stripping agent], M for the recovery of Ce (III) from loaded organic phase of 0.7 M PC 88A and 0.1 M Cyanex 921 in kerosene.

9.1 % Extraction against equilibration time for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.05 M [A336] [NO₃⁻] and 0.04 M Cyanex 921.

9.2 % Extraction of 0.001 M Ce (III) from 1.0 M KNO₃ using mixtures of 0.05 M [A336] [NO₃⁻] and 0.04 M Cyanex 921 against [HNO₃], M.

9.3 log D_{mix} against log [NO₃⁻] for the extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.05 M [A336] [NO₃⁻] and 0.04 M Cyanex 921.

9.4 log D_{mix} against log [A336] [NO₃⁻] for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.04 M Cyanex 921.
9.5 \(\log D_{\text{max}} \) against \(\log [\text{Cyanex 921}] \) for the extraction of Ce (III) from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using 0.05 M [A336] [NO\(_3^–\)].

9.6 S.C against [A336] [NO\(_3^–\)]/[Cyanex 921], M for the extraction of Ce (III) from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using mixture of [A336] [NO\(_3^–\)] and Cyanex 921.

9.7 \(\log K_{\text{ex}} \) against 1000/T for the extraction of Ce (III) from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using mixture of 0.05 M [A336] [NO\(_3^–\)] and 0.04 M Cyanex 921 in kerosene.

9.8 % Extraction against [Ce (III)], M on its extraction from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using mixture of 0.05 M [A336] [NO\(_3^–\)] and 0.04 M Cyanex 921 in kerosene.

9.9 % Extraction against phase volume ratio (O/A) for the extraction of Ce (III) from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using mixture of 0.05 M [A336] [NO\(_3^–\)] and 0.04 M Cyanex 921.

9.10 % Extraction against [NO\(_3^–\)], M for the extraction of Ce (III) from 0.01 M HNO\(_3\) and 1.0 M KNO\(_3\) using mixture of 0.05 M [A336] [NO\(_3^–\)] and 0.04 M Cyanex 921.

9.11 % Stripping against [stripping agent], M for the recovery of Ce (III) from loaded organic phase with 0.05 M [A336] [NO\(_3^–\)] and 0.4 M Cyanex 921.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Properties of cerium</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Range of the parameters for the extraction of Ce (III) in this work</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>The effect of equilibration time on the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>The effect of HNO₃ concentration on the extraction of Ce (III) from 1.0 M KNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>The effect of nitrate ion concentration on extraction Ce (III) from 0.01 M HNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>The effect of Cyanex 921 concentration on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃.</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>The effect of temperature on the Ce (III) extraction from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of Ce (III) concentration on the extraction from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>53</td>
</tr>
<tr>
<td>3.7</td>
<td>The effect of phase volume ratio (O/A) for the extraction of Ce (III) from 0.01 M HNO₃ and 0.2 M KNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>The effect of diluents on the extraction of 0.001 M Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.1 M Cyanex 921.</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>The effect of nitrate ion concentration on the extraction of 0.001 M Ce (III) from 0.01 M HNO₃ using 0.1 M Cyanex 921 in kerosene.</td>
<td>56</td>
</tr>
<tr>
<td>3.10</td>
<td>Extraction data analysis using regression statistics.</td>
<td>58</td>
</tr>
<tr>
<td>3.11</td>
<td>Results of linear regression analysis.</td>
<td>59</td>
</tr>
<tr>
<td>3.12</td>
<td>The effect of stripping agent concentration for the recovery of Ce (III) from loaded organic phase with 0.2 M Cyanex 921 in kerosene.</td>
<td>60</td>
</tr>
</tbody>
</table>
4.1 The effect of equilibration time on extraction of Ce (III) from 0.01 M HNO3 and 1.0 M KNO3 using 0.1 M Cyanex 923 in kerosene.

4.2 The effect of HNO3 concentration on extraction of Ce (III) from 1.0 M KNO3 using 0.1 M Cyanex 923 in kerosene.

4.3 The effect of nitrate ion concentration on extraction of Ce (III) from 0.01 M HNO3 using 0.1 M Cyanex 923 in kerosene.

4.4 The effect of Cyanex 923 concentration on extraction of Ce (III) from 0.01 M HNO3 and 1.0 M KNO3.

4.5 The effect of temperature on extraction of Ce (III) from 0.01 M HNO3 and 1.0 M KNO3 using 0.1 M Cyanex 923 in kerosene.

4.6 The effect of [Ce (III)], M on its extraction from 0.01 M HNO3 and 1.0 M KNO3 using 0.1 M Cyanex 923 in kerosene.

4.7 The effect of phase volume ratio (O/A) for extraction of Ce (III) from 0.01 M HNO3 and 0.2 M KNO3 using 0.1 M Cyanex 923 in kerosene.

4.8 The effect of diluents on extraction of Ce (III) from 0.01 M HNO3 and 1.0 M KNO3 using 0.1 M Cyanex 923.

4.9 Distribution ratios (D) and separation factors (β) of light rare earths (Ce, La, Pr and Nd) using Cyanex 923. D_{Ce} = 44.31 without Ln (III).

4.10 Extraction data analysis using regression statistics.

4.11 Results of linear regression analysis.

4.12 The effect of concentrations of stripping agents on the recovery of Ce (III) from loaded organic phase with 0.4 M Cyanex 923 diluted with kerosene.

5.1 The effect of equilibration time on extraction of Ce (III) from 0.001 M HNO3 using 0.4 M PC 88A in kerosene.

5.2 The effect of HNO3 concentration on extraction of Ce (III) using 0.4 M PC 88A in kerosene.

5.3 The effect of PC 88A concentration on extraction of Ce (III) from 0.001 M HNO3.

5.4 The effect of temperature on extraction of Ce (III) from 0.001 M HNO3.
using 0.4 M PC 88A in kerosene.

5.5 The effect of Ce (III) concentration on its extraction from 0.001 M HNO₃ using 0.4 M PC 88A in kerosene.

5.6 The effect of phase volume ratio (O/A) for the extraction of Ce (III) from 0.001 M HNO₃ using 0.4 M PC 88A in kerosene.

5.7 The effect of diluents on extraction of Ce (III) from 0.001 M HNO₃ using 0.4 M PC 88A.

5.8 Extraction data analysis.

5.9 Results of linear regression analysis

5.10 The effect of concentrations of stripping agents on the recovery of Ce (III) from loaded organic phase with 0.7 M PC 88A in kerosene.

6.1 The effect of equilibration time on extraction of Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.2 The effect of HNO₃ concentration on extraction of 0.001M Ce (III) from 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.3 The effect of nitrate ion concentration on extraction of 0.001 M Ce (III) from 0.01 M HNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.4 The effect of [A336][NO₃⁻] concentration on extraction of 0.001 M Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃.

6.5 The effect of temperature on extraction of 0.001 M Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.6 The effect of Ce (III) ion concentration on its extraction from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.7 The effect of phase volume ratio (O/A) for extraction of Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻] in kerosene.

6.8 The effect of diluents on extraction of Ce (III) from 0.01 M HNO₃ and 3.0 M KNO₃ using 1.0 M [A336][NO₃⁻].

6.9 Extraction data analysis

6.10 Results of linear regression analysis
7.1 The effect of equilibration time on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.2 The effect of HNO₃ concentration on extraction of Ce (III) from 1.0 M KNO₃ using 0.04 M Cyanex 921 (D₁) and 0.04 M Cyanex 923 (D₂) and their binary mixture (D_{mix}) in kerosene.

7.3 The effect of nitrate ion concentration on extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.4 The effect of extractant concentration on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using Cyanex 921 (varied) (D₁), 0.04 M Cyanex 923 (D₂) and their mixture (D_{mix}).

7.5 The effect of extractant concentration on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.04 M Cyanex 921 (D₁), Cyanex 923 (varied) (D₂) and their binary mixture (D_{mix}).

7.6 The effect of temperature on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.7 The effect of Ce (III) concentration on its extraction from 0.01 M HNO₃ and 1.0 M using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.8 The effect of phase volume ratio (O/A) on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.9 The effect of diluents on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923.

7.10 The effect of nitrate ion concentration on extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.04 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.11 Distribution ratios (D) and Separation factors (β) of light rare earths (Ce,
La, Pr and Nd) using binary mixture of 0.2 M Cyanex 921 and 0.04 M Cyanex 923. D$_{Ce}$=41.72 without Ln (III).

7.12 Extraction data analysis.

7.13 Results of linear regression analysis.

7.14 The effect of concentrations of stripping agents on the recovery of Ce (III) from loaded organic phase with 0.2 M Cyanex 921 and 0.04 M Cyanex 923 in kerosene.

7.15 The effect of concentrations of stripping agents on the recovery of Ce (III) from loaded organic phase with 0.04 M Cyanex 921 and 0.2 M Cyanex 923 in kerosene.

8.1 The effect of equilibration time on extraction of 0.001 M Ce (III) from 0.001 M HNO$_3$ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.2 The effect of HNO$_3$ concentration on extraction of 0.001 M Ce (III) extraction using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.3 The effect of nitrate ion concentration on extraction of 0.001 M Ce (III) from 0.001 M using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.4 The effect of Cyanex 921 concentration on extraction of 0.001 M Ce (III) from 0.001 M HNO$_3$ using 0.1/0.2 M PC 88A in kerosene.

8.5 The effect of PC 88A concentration on extraction of 0.001 M Ce (III) from 0.001 M HNO$_3$ using 0.1 M Cyanex 921 in kerosene.

8.6 The effect of temperature on extraction of 0.001 M Ce (III) from 0.001 M HNO$_3$ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.7 The effect of Ce (III) ion concentration on its extraction from 0.001 M HNO$_3$ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.
8.8 The effect of phase volume ratio (O/A) for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921 in kerosene.

8.9 The effect of diluents for the extraction of 0.001 M Ce (III) from 0.001 M HNO₃ using mixture of 0.2 M PC 88A and 0.1 M Cyanex 921.

8.10 Extraction data analysis

8.11 Results of linear regression analysis

8.12 The effect of concentrations of stripping agents for the recovery of Ce (III) from loaded organic phase with 0.7 M PC 88A and 0.1 M Cyanex 921 in kerosene.

9.1 The effect of equilibration time on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.05 M [A336][NO₃⁻] and 0.04 M Cyanex 921 in kerosene.

9.2 The effect of HNO₃ concentration on extraction of Ce (III) from 1.0 M KNO₃ using mixture of 0.05 M [A336][NO₃⁻] and 0.04 M Cyanex 921 in kerosene.

9.3 The effect of nitrate ion concentration on extraction of Ce (III) from 0.01 M HNO₃ using mixture of 0.05 M [A336][NO₃⁻] and 0.04 M Cyanex 921 in kerosene.

9.4 The effect of [A336][NO₃⁻] concentration on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.04 M Cyanex 921 in kerosene.

9.5 The effect of Cyanex 921 concentration on extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using 0.05 M [A336][NO₃⁻] in kerosene.

9.6 The effect of temperature on extraction of Ce (III) from 1.0 M KNO₃ and 0.01 M HNO₃ using 0.05 M [A336][NO₃⁻] (D₁) and 0.04 M Cyanex 921 (D₂) and their binary mixture (D₃mix) in kerosene.

9.7 The effect of Ce (III) ion concentration on its extraction from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.05 M [A336][NO₃⁻] and 0.04 M Cyanex 921 in kerosene.
9.8 The effect of phase volume ratio (O/A) for the extraction of Ce (III) from 0.01 M HNO₃ and 1.0 M KNO₃ using mixture of 0.05 M [A336] [NO₃⁻] and 0.04 M Cyanex 921 in kerosene.

9.9 The effect of diluents on the extraction of Ce (III) from 1.0 M KNO₃ and 0.01 M HNO₃ using 0.05 M [A336] [NO₃⁻] (D₁) and 0.04 M Cyanex 921(D₂) and their binary mixture (Dₘ�舆论) in kerosene.

9.10 The effect of nitrate ion concentration on extraction of 0.001 M Ce (III) from 0.01 M HNO₃ using mixture of 0.05 M [A336] [NO₃⁻] and 0.04 M Cyanex 921 in kerosene.

9.11 The distribution ratios (D) and Separation factors (β) of light rare earths (Ce, La, Pr and Nd) using mixture 0.05 M [A336] [NO₃⁻] and of 0.4 M Cyanex 921 in kerosene.

9.12 Extraction data analysis

9.13 Results of linear regression analysis

9.14 The effect of concentrations of stripping agents for the recovery of Ce (III) from loaded organic phase with 0.05 M [A336] [NO₃⁻] and 0.4 M Cyanex 921 in kerosene.

10.1 Results of quantitative extraction of Ce (III).

10.2 Results of quantitative stripping for the recovery of Ce (III).