LIST OF FIGURES

Fig. 1.1 band representation of conductor, insulator and semiconductor. 3
Fig. 1.2 Intrinsic and Extrinsic semiconductors 4
Fig. 1.3 E-K Diagrams for direct and indirect band gap semiconductors 5
Fig. 1.4 Behavior of Quantum well, quantum wire and quantum dot 6
Fig. 1.5 Change in transition from discrete to continuum with size of particle. 7
Fig. 1.6 Bulk semiconductors to nano semiconductors 9
Fig. 1.7 Applications of Semiconductors 11
Fig. 1.8 Condensation reaction 13
Fig. 1.9 The formation of a Schiff base from an aldehydes or ketones 14
Fig. 1.10 (a) Dithiocarbazic acid (b) mono dithiocarboxyl (CSSH) derivatives of hydrazine (a), (c) Free dithiocarbazic acid, (d) hydrazinium salts (e) solubility behavior of dithiocarbazic acid. 16
Fig. 1.11 (a) dithiocarbazic acid, (b) N-substituted free dithiocarbazics acids, (c) S-alky esters of dithiocarbazic acid and S-alkyl/benzyl dithiocarbazate. 17
Fig. 2.1 Top down and bottom up approach 34
Fig. 2.2 Various Bottom up and Top down techniques 35
Fig. 2.3 Chemical vapor deposition 36
Fig. 2.4 X ray diffraction representation 42
Fig. 2.5 Block diagram of SEM 45
Fig. 2.6 Block diagram of TEM 47
Fig. 2.7 Schematic of UV-vis spectrometer 50
Fig. 2.8 Photoluminescence (PL) Spectroscopy 52
Fig. 2.9 Perkin Elmer LS 55 53
Fig. 2.10 Schematic diagram of dispersive spectrometer 54
Fig. 2.11 Block Diagram of FTIR 56
Fig. 2.12 FTIR Perkin Elmer 56
Fig. 4.1 Structure of Pot. Salt of dithiocarbazic acid 72
Fig. 4.2 Structure of S- benzyl dithiocarbazate

Fig. 4.3 Structure of general Schiff base.

Fig. 4.4 Tautomeric forms (a) thione form (b) thiolo form.

Fig. 4.5 FTIR spectra of 5-bromo-4-hydroxy- 3-methoxy-2-nitro benzaldehyde Schiff base of S-benzylidithiocarbazate.

Fig. 4.6 Optimized molecular structure of the 5-bromo-4-hydroxy- 3-methoxy-2-nitro benzaldehyde Schiff base of S-benzylidithiocarbazate.

Fig. 4.7 Molecular electrostatic potential surface diagram of the the 5-bromo-4-hydroxy- 3-methoxy-2-nitro benzaldehyde Schiff base of S-benzylidithiocarbazate Schiff base obtained from AM1 (I), PM3 (II), MNDO (III) and MNDO/d (IV).

Fig. 4.8 FTIR spectrum of 4 NNbiscynodiethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethylaminophenyl methylene)dithiocarbazate.]

Fig. 4.9 Tautomeric forms of the S-benzyl β-N-(4-NNBiscynodiethylamino phenylmethylene) dithiocarbazate (1a; thione form and 1b; thiol form).

Fig. 4.10 Optimized molecular structure of S-benzyl β-N-(4-NN biscynodiethylaminophenylmethylen) dithiocarbazate.

Fig. 4.11 Graphical correlations between the experimental and calculated bond lengths of S-benzyl β-N-(4-NN biscynodiethylaminophenylmethylen) dithiocarbazate obtained by semi-empirical AM1 and PM3 methods (cc = correlation coefficient).

Fig. 4.12 Graphical correlations between the experimental and calculated bond angles of S-benzyl β-N-(4-NN biscynodiethylaminophenylmethylen) dithiocarbazate obtained by semi-empirical AM1. and PM3 methods (CC= correlation coefficient).

Fig. 4.13 Graphical correlations between the experimental and calculated vibration frequencies of S-benzyl β-N-(4-NN biscynodiethy laminophenylmethylen) dithiocarbazate obtained by AM1 and
PM3 semi-empirical methods (cc = correlation coefficient).

Fig. 4.14 Molecular orbital surface and HOMO–LUMO energy gap for S-benzyl β-N-(4-NN biscynodiethylaminophenylmethylene) dithiocarbazate obtained by AM1 semi-empirical method.

Fig. 4.15 Molecular orbital surface and HOMO–LUMO energy gap for S-benzyl β-N-(4-NN biscynodiethylaminophenylmethylene) dithiocarbazate obtained by PM3 semi-empirical method.

Fig. 4.16 Structure of S-benzyl 2-N-(phenyl)methylenedithiocarbazate.

Fig. 4.17 FTIR spectrum of Benzophenone Schiff base of SBDTC [S-benzyl 2-N (phenyl) methylene di thio carbazate.

Fig. 4.18 Structure of S benzyl 2N (Phenyl methyl) methylene di thiocarbazate.

Fig. 4.19 FTIR spectrum of aceto phenone Schiff base of SBDTC [S benzyl 2N (Phenyl methyl) methylene di thio carbazate]

Fig. 4.20 Structure of 4 Nitro Acetophenone Schiff base of SBDTC [S-benzyl β-N (4 nitro (phenyl methyl) methlene) di thio carbazate]

Fig. 4.21 FTIR 4 nitro aceto phenone Schiff base of SBDTC [S benzyl βN (4 nitro phenyl methyl) methelene di thio carbazate]

Fig. 4.22 Structure of para amino acetophenone Schiff base of SBDTC [S benzyl β N(4 amino phenyl methyl) methylene di thio carbazate]

Fig. 4.23 FTIR of Para amino Acetophenone Schiff base of SBDTC [S-benzyl β-N(4 amino phenyl methyl) methylene di thio carbazate]

Fig. 4.24 Structure of Para methyl Acetophenone Schiff base of SBDTC [S -benzyl β- N(4 methyl β methyl) methylene di thio carbazate]

Fig. 4.25 FTIR spectra of Para methyl Acetophenone Schiff base of SBDTC [S -benzyl β- N(4 methyl β methyl) methylene di thio carbazate]

Fig. 5.1 Block representation of process of synthesis of CdS nano structures.

Fig. 5.2 X ray diffractogram for CdS nanoparticles obtained by Cadmium complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde
Schiff base of SBDTC.

Fig. 5.3 TEM and HRTEM micrographs of CdS nanoparticles obtained by Cadmium complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC (a) TEM image (b),(c), (d) HRTEM images, (e) reduced FFT (f) histogram image.

Fig. 5.4 Spectrum of CdS nanoparticles obtained by Cadmium complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC.

Fig. 5.5 FTIR spectrum of CdS nanoparticles obtained by Cadmium complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC.

Fig. 5.6 X ray diffractogram of Cadmium complex of 4NNbiscyno diethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 5.7 HRTEM ans TEM micrographs of CdS Nanostructure obtained by Cadmium complex of 4NNbiscyno diethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 5.8 Absorption Curve for CdS nanoparticles obtained by Cadmium complex of 4NNbiscyno diethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 5.9 5.9 FTIR spectrum of CdS nanoparticles using Cadmium complex of S-benzyl 2-N-(phenyl)methylene dithiocarbazate [Cd II (PhSbdtcz)2]

Fig. 5.10 X ray diffractogram of CdS nanoparticles obtained by Cadmium complex S-benzyl 2-N-(phenyl)methylene dithiocarbazate [Cd II (PhSbdtcz)2].

Fig. 5.11 TEM and HRTEM micrographs of CdS nanoparticles obtained by Cadmium complex S-benzyl 2-N-(phenyl)methylene dithiocarbazate [Cd II (PhSbdtcz)2] precursor.
Fig. 5.12 Optical spectrum of CdS nanoparticles obtained by Cadmium complex S-benzyl 2-N-(phenyl)methylene thiocarbazate [Cd II (PhSbdtcz)2].

Fig. 5.13 FTIR spectrum of CdS nanoparticles obtained by Cadmium complex S-benzyl 2-N-(phenyl)methylene thiocarbazate [Cd II (PhSbdtcz)2].

Fig. 5.14 X ray diffractogram for CdS nanoparticles obtained by acetophnone schiff base of S-benzyldithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylenedithiocarbazate [Cd II (PhMeSbdtcz)2].

Fig. 5.15 Comparison between x ray diffractograms obtained from different Cd complex precursor.

Fig. 5.16 TEM and HRTEM micrographs of CdS nanoparticles obtained by acetophnone schiff base of S-benzyldithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylenedithiocarbazate [Cd II (PhMeSbdtcz)2].

Fig. 5.17 Optical spectrum of CdS nanoparticles obtained by cadmium complex of acetophnone schiff base of S-benzyldithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylenedithiocarbazate [Cd II (PhMeSbdtcz)2].

Fig. 5.18 FTIR spectrum of CdS nanoparticles obtained by Cadmium complex of acetophnone schiff base of S-benzyldithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylenedithiocarbazate [Cd II (PhMeSbdtcz)2].

Fig. 5.19 X ray diffractogram for CdS nanoparticles obtained by Cadmium complex of 4 nitro acetophnone Schiff base of S-benzyldithiocarbazate: S-benzyl β-N-(4 nitro phenylmethyl)methylene thiocarbazate [Cd II (NiPhMesbdtcz)2].

Fig. 5.20 TEM and HRTEM micrographs of CdS nanoparticles obtained by Cadmium complex of 4 nitro acetophnone Schiff base of S-benzyldithiocarbazate: S-benzyl β-N-(4 nitro phenylmethyl) methylenedithiocarbazate [Cd II (NiPhMesbdtcz)2].

Fig. 5.21 Optical spectrum of CdS nano particles obtained by Cadmium
complex Cadmium complex of 4 nitro acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4 nitro phenylmethyl) methylenedithiocarbazate [CdII (NiPhMesbdtcz)\textsubscript{2}] precursor.

Fig. 5.22 FTIR spectrum of CdS nanoparticles obtained by Cadmium complex of 4 nitro acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4 nitro phenylmethyl) methylenedithiocarbazate [CdII (NiPhMesbdtcz)\textsubscript{2}] precursor.

Fig. 5.23 X ray diffractogram for CdS nanoparticles obtained by Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}].

Fig. 5.24 TEM and HRTEM micrographs of CdS nanoparticles obtained by Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}].

Fig. 5.25 Optical absorption spectrum for CdS nanoparticles obtained by Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}] precursor.

Fig. 5.26 FTIR of CdS using Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl)methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}].

Fig. 5.27 X ray diffractogram for CdS nanoparticles obtained by Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}].

Fig. 5.28 Optical spectrum of CdS nanoparticles obtained by Cadmium complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [CdII (AmPhMesbdtcz)\textsubscript{2}].

Fig. 5.29 FTIR spectrum of CdS nanoparticles obtained by Cadmium
complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methyl enedithiocarbazate [Cd II (AmPhMesbdtcz)2].

Fig. 5.30 PL spectra of CdS nanostructures obtained by Cadmium complex of various precursors.

Fig. 6.1 Models showing the difference between wurtzite and zinc blende crystal structures.

Fig. 6.2 Block representation of process of synthesis of CdS nanostructures

Fig. 6.3 X ray diffractogram ZnS particles synthesized using Zinc complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC

Fig. 6.4 TEM of ZnS particles synthesized using Zinc complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC

Fig. 6.5 Optical spectra of ZnS particle synthesized using Zinc complex of 5-Bromo-4-hydroxy-3-methoxy-2-nitro Benzaldehyde Schiff base of SBDTC

Fig. 6.6 X ray diffractogram of ZnS nanoparticles using Zinc complex of 4NNbiscyno diethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 6.7 HRTEM image Histogram of ZnS particle Zinc complex of 4NNbiscyno diethylamino benzaldehyde Schiff base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 6.8 Optical Spectrum of Zinc complex of 4NNbiscyno diethylamino benzaldehyde Schiff 6base of SBDTC [S-benzyl β-N-(4-NN biscynodiethyl aminophenyl methylene) dithiocarbazate]

Fig. 6.9 X ray diffractogram for ZnS nanoparticles obtained by Zinc complex of -benzyl 2-N-(phenyl)methylene dithiocarbazate [Zn II
Fig. 6.10 TEM and HRTEM of ZnS nanoparticles obtained by Zn complex of -benzyl 2-N-(phenyl)methylene thiocarbazate [Zn II (Phsbdtcz)2]

Fig. 6.11 Absorption spectrum of ZnS nanoparticles obtained by Zn complex of -benzyl 2-N-(phenyl)methylene thiocarbazate [Zn II (Phsbdtcz)2].

Fig. 6.12 Photoluminescence spectrum of ZnS nanoparticle obtained by Zinc complex of Zn complex of -benzyl 2-N-(phenyl)methylene thiocarbazate [Zn II (Phsbdtcz)2]

Fig. 6.13 FTIR spectrum of ZnS structures obtained by using Zinc complex of Zn complex of -benzyl 2-N-(phenyl)methylene thiocarbazate [Zn II (Phsbdtcz)2]

Fig. 6.14 X-ray diffractogram for ZnS nanoparticle using Zinc complex of acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylene thiocarbazate [Zn II (PhMesbdtcz)2]

Fig. 6.15 HRTEM of Zinc complex of acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylene thiocarbazate [Zn II (PhMesbdtcz)2]

Fig. 6.16 Photoluminescence spectrum and Optical absorption studies of CdS nanoparticles synthesized using Zinc complex of acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylene thiocarbazate [Zn II (PhMesbdtcz)2]

Fig. 6.17 FTIR spectrum of ZnS sample synthesized using Zinc complex of acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl 2-N-(phenylmethyl) methylene thiocarbazate [Zn II (PhMesbdtcz)2]

Fig. 6.18 X-ray diffraction of ZnS nanostructures synthesized using Zinc complex of 4 nitro acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4 nitro phenyl methyl)methylene thiocarbazate [Zn II (NiPhMesbdtcz)2].

Fig. 6.19 HRTEM structures of ZnS nanostructures using S-benzyl 2-
methyl (methyl)methylene dithiocarbazate [Cd II(ph)SBDT CZ]_2].

Fig. 6.20 Optical absorption spectra of ZnS synthesized using Zinc complex of 4 nitro acetophnone Schiff base of S-benzyldithiocarbazate: S-benzyl β-N-(4 nitro phenylmethyl)methylene dithiocarbazate [Zn II (NiPhMesbdtcz)_2].

Fig. 6.21 X ray diffractograms of ZnS nanoparticles synthesis using zinc complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [Zn II (AmPhMesbdtcz)_2].

Fig. 6.22 TEM and HRTEM of ZnS nanoparticles synthesis using zinc complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [Zn II (AmPhMesbdtcz)_2].

Fig. 6.23 Optical spectrum of ZnS nanoparticles synthesis using zinc complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl) methylenedithiocarbazate [Zn II (AmPhMesbdtcz)_2].

Fig. 6.24 FTIR Spectra of ZnS nanoparticles synthesis using zinc complex of p-amino acetophnone Schiff base of S-benzyl dithiocarbazate: S-benzyl β-N-(4-amino phenylmethyl)methylene dithiocarbazate [Zn II (AmPhMesbdtcz)_2].

Fig. 6.25 Synthesis of ZnS nanoparticles using using Zn complex of p-methyl acetophnone Schiff base of S-benzyl dithiocarbazate:S-benzyl β-N-(4-methyl phenylmethyl)methylene dithiocarbazate [Zn II (MePh Mesbdtcz)_2].

Fig. 6.26 TEM of ZnS nanostructures synthesized by Synthesis of ZnS nanoparticles using using Zn complex of p-methyl acetophnone Schiff base of S-benzyl dithiocarbazate:S-benzyl β-N-(4-methyl phenylmethyl)methylene dithiocarbazate [ZnII (MePhMesbdtcz)_2].

Fig. 6.27 Luminescence spectra for ZnS samples synthesized using obtained by the precursors 1, 2, and 6.
Fig. 6.28	X ray Diffractograms for ZnS (1) and ZnS (2).	185
Fig. 6.29	Optical Absorption spectrum of ZnS nanoparticles	185
Fig. 6.30	Photoluminescence spectra of ZnS nanostructures.	186