CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>SCOPE OF THE PRESENT INVESTIGATION</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>MATERIALS AND METHODS</td>
<td>47</td>
</tr>
<tr>
<td>4.</td>
<td>RESULTS</td>
<td>136</td>
</tr>
<tr>
<td>5.</td>
<td>DISCUSSION</td>
<td>158</td>
</tr>
<tr>
<td>6.</td>
<td>SUMMARY AND CONCLUSION</td>
<td>222</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY
LIST OF CONTENTS

1. INTRODUCTION
 MYOCARDIAL INFARCTION
 AETIOLOGY
 PATHOLOGY
 PATHOPHYSIOLOGY
 RISK FACTORS FOR MYOCARDIAL INFARCTION
 Increasing age
 Sex
 Preexisting of ischemic heart disease
 Hyperlipidemia
 Hypertension
 Diabetes
 Obesity
 Personality
 Smoking and alcoholism
 Above average levels of blood clotting factors

COMPLICATIONS
 Early complications
 Later complications

MECHANISM OF MYOCARDIAL DAMAGE
 Role of free radicals
 Role of metal catalyst
 Role of LPO
Role of thrombosis
Role of neutrophils
Role of calcium
Role of Lysosomes

METABOLIC ALTERATIONS
BIOCHEMICAL ALTERATIONS
BIOCHEMICAL MARKERS FOR THE DETECTION OF MI
ELECTROCARDIOGRAPHY
SYNTHETIC DRUG THERAPY FOR ACUTE MYOCARDIAL INFARCTION

Thrombolytic agents
Antifibrinolytic drugs
Antiplatelet drugs and vasodilators
Anticoagulants
Betablockers
Calcium - channel blocking agents
Angiotensin converting enzyme inhibitors
Nitric oxide
Glucose potassium insulin
Lipid lowering agents
Glucocorticoids
Potassium channel openers
Cardiac glycosides
Diuretics

DISADVANTAGE OF SYNTHETIC DRUG THERAPY
PLANT DERIVED PHYTOCHEMICALS AS THERAPEUTIC AGENTS
ADVANTAGE OF PLANTS DERIVED ANTIOXIDANT THERAPY
PLANT DERIVED ANTIOXIDANTS IN CVD
MANGIFERA INDICA LINN
ACTIVE PRINCIPLE -- MANGIFERIN
 Structure of mangiferin
 Mangiferin from various sources of plants
 Antioxidant properties of mangiferin
 Mangiferin and cardioprotection
 Pharmacological and other properties of mangiferin
 Mechanism and action of mangiferin
EXPERIMENTAL INDUCTION OF MYOCARDIAL INFARCTION IN ANIMALS
 Isoproterenol
 Isoproterenol structure and properties
 Mechanism of action

2. SCOPE OF THE PRESENT INVESTIGATION

3. MATERIALS AND METHODS
CHEMICALS AND THEIR SOURCES
DRUG
ANIMALS
DOSAGE FIXATION
3.1 HEART WEIGHT TO BODY WEIGHT DETERMINATION
3.2 HISTOPATHOLOGICAL STUDY
3.3 ELECTROCARDIOGRAPHIC STUDIES
3.4 BIOCHEMICAL STUDIES ON MARKERS
 3.4.1 Serum marker enzymes
 3.4.1.1 Assay of AST
 3.4.1.2 Assay of ALT
 3.4.1.3 Assay of CPK
 3.4.1.4 Assay of CK-MB
 3.4.1.5 Assay of LDH
 3.4.2 Heart tissue markers enzymes
3.5 INFarCT SIZE STUDIES (TTC Test)
3.6 ELECTROPHORESIS SEPARATION STUDIES
 3.6.1 Separation of serum LDH isoenzymes
 by agarose gel electrophoresis
 3.6.2 Separation of plasma proteins by
 agarose gel electrophoresis
3.7 ESTIMATION OF PROTEIN
 3.7.1 Heart tissue and serum protein
 3.7.2 Determination of A/G ratio
3.8 LIPID PEROXIDATION AND ANTIOXIDANT
 STUDIES
 3.8.1 Estimation of LPO in serum and tissue
 3.8.2 Estimation of iron in serum
 3.8.3 Estimation of plasma iron-binding serum
 3.8.4 Estimation of ceruloplasmin in serum
 3.8.5 Estimation of uric acid in serum
 3.8.6 Estimation of vitamin E in serum
 3.8.7 Estimation of vitamin C in serum
3.9 ANTIOXIDANT ENZYMES STUDIES

3.9.1 Estimation of glutathione in blood and heart tissue
3.9.2 Assay of heart tissue glutathione peroxidase
3.9.3 Assay of heart tissue glutathione reductase
3.9.4 Assay of heart tissue glutathione-S-transferase
3.9.5 Assay of heart tissue superoxide dismutase
3.9.6 Assay of heart tissue catalase

3.10 LIPIDS AND LIPOPROTEIN PROFILES IN SERUM AND HEART

3.10.1 Extraction of lipids
 3.10.1.1 Estimation of cholesterol
 3.10.1.2 Estimation of free and ester cholesterol
 3.10.1.3 Estimation of triglycerides
 3.10.1.4 Estimation of phospholipid
 3.10.1.5 Estimation of free fatty acids
 3.10.1.6 Lipoprotein fractionation
 3.10.1.7 Estimation of activity of lipoprotein and triglyceride lipase in heart

3.11 MACROMOLECULAR ANALYSIS

3.11.1 Estimation of blood glucose
3.11.2 Estimation of glycogen in heart tissue
3.11.3 Extraction of nucleic acids
 3.11.3.1 Estimation of DNA
 3.11.3.2 Estimation of RNA
3.12 ANALYSIS OF ELEMENTS IN SERUM, HEART AND MITOCHONDRIA

3.12.1 Estimation of sodium and potassium
3.12.2 Estimation of calcium and magnesium
3.12.3 Estimation of serum, zinc and copper

3.13 MITOCHONDRIAL STUDIES

3.13.1 Isolation of mitochondria from heart tissue
 3.13.1.1 Protein estimation
 3.13.1.2 Antioxidant status in mitochondria
 3.13.1.3 Assay of mitochondrial membrane bound enzyme
 3.13.1.4 Assay of mitochondrial TCA cycle enzymes
 3.13.1.5 Estimation of cytochromes oxidation
 3.13.1.6 Estimation of NADH oxidation
 3.13.1.7 Determination of oxidative phosphorylation
 3.13.1.8 Estimation of ATP
 3.13.1.9 Mitochondrial lipid profile determination

3.14 MITOCHONDRIAL ELECTRON MICROSCOPIC STUDIES

3.15 ESTIMATION OF PLASMA LACTATE

3.16 LYSOSOMAL STUDIES

3.16.1 Isolation of lysosomes
 3.16.1.1 Assay of acid phosphatase
 3.16.1.2 Assay of β-D glucuronidase
3.16.1.3 Assay of β-D glucosidase and
β-D galactosidase

3.16.1.4 Assay of cathepsin - D

3.17 HEMATOLOGICAL PARAMETERS

3.17.1 Enumeration of RBC
3.17.2 Estimation of hemoglobin
3.17.3 Determination of erythrocyte
sedimentation rate
3.17.4 Determination of Hematocrit
3.17.5 Enumeration of platelet
3.17.6 Estimation of fibrinogen
3.17.7 Determination of bleeding time
3.17.8 Determination of clotting time
3.17.9 Determination of prothrombin time
3.17.10 Enumeration of WBC
3.17.11 Enumeration of DC

3.18 STATISTICAL ANALYSIS

4.5 RESULTS AND DISCUSSION

Dosage fixation for the drug
Mortality rate determination
Effect of mangiferin on heart weight to body weight ratio
Effect of mangiferin on histopathological changes of heart
Effect of mangiferin on ECG changes of heart
Effect of mangiferin on serum and heart tissue marker enzymes
Effect of mangiferin on serum CK-MB isoenzymes
Effect of mangiferin on serum LDH isoenzyme
Effect of mangiferin on Histochemical changes of myocardium
Effect of mangiferin on serum protein, A/G ratio and plasma protein electrophoresis separation
Effect of mangiferin on serum and heart tissue LPO
Effect of mangiferin on serum non-enzymic antioxidant
Effect of mangiferin on glutathione and heart tissue antioxidant enzymes
Effect of mangiferin on serum and heart tissue lipids and lipoproteins
Effect of mangiferin on heart tissue protein, DNA and RNA
Effect of mangiferin on heart tissue glycogen and blood glucose
Effect of mangiferin on serum and heart tissue electrolytes
Effect of mangiferin on heart mitochondrial LPO
Effect of mangiferin on mitochondrial antioxidant enzymes
Effect of mangiferin on mitochondrial protein, membrane bound enzymes and electrolyte levels
Effect of mangiferin on mitochondrial TC/A cycle enzymes
Effect of mangiferin on plasma lactate
Effect of mangiferin on mitochondrial oxidative phosphorylation and ETC
Effect of mangiferin on heart mitochondrial structure (Electron microscopic study)
Effect of mangiferin mitochondrial lipids
Effect of mangiferin lysosomal LPO, protein and enzymes in serum, lysosomes
Effect of mangiferin on haemotolical parameters
LIST OF PLATES

Plate 1 Histopathological study
Plate 2 ECG study
Plate 3 Serum plasma LDH isoenzyme electrophoresis study
Plate 4 TTC test
Plate 5 Plasma protein electrophoresis study
Plate 6 Electron microscopic study