CONTENTS

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td>Preface</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1

An overview of I-III-VI$_2$ chalcopyrite compounds

1.1 Introduction 2

1.2 Significance and a brief review of work on Ag-based chalcopyrites 3

1.2.1 Structural Properties 4

1.2.2 Optical and Electrical Properties 6

1.2.3 Doping Effects 10

1.2.4 Preparation Methods 10

1.2.5 Applications 12

1.3 Motivation and Objectives 13

References 16

Chapter 2

Deposition and characterization techniques 22

2.1 Introduction 23

2.2 Deposition Techniques 23

2.2.1 Thermal Evaporation Method 25

2.2.2 Factors Affecting Quality of Reactively Evaporated Thin Films 26

2.2.3 Multisource Vacuum Coating Unit 27

2.3 Characterization Techniques 30

2.3.1 Energy Dispersive Analysis of X-rays (EDAX) 31

2.3.2 Rutherford Backscattering Spectrometry (RBS) 32

2.3.3 Scanning Electron Microscopy (SEM) 33

2.3.4 Atomic Force Microscopy (AFM) 35

2.3.5 X-ray Diffraction Technique (XRD) 36

2.3.6 X-ray Photoelectron Spectroscopy (XPS) 38
Chapter 3
Ternary chalcopyrite thin films Ag-In-Se and Ag-Ga-Se: Preparation and microstructural analysis

3.1 Introduction
3.2 Studies on thin films of near stoichiometric AgInSe$_2$ and AgGaSe$_2$
 3.2.1 Experimental
 3.2.2 Results and Discussion
 3.2.2.1 Compositional Analysis
 3.2.2.2 Morphological Characterization
 3.2.2.3 Structural Characterization
3.3 Studies on thin films of OVC AgGa$_3$Se$_5$ and AgGa$_7$Se$_{12}$
 3.3.1 Introduction
 3.3.2 Experimental
 3.3.3 Results and Discussion
 3.3.3.1 Compositional Analysis
 3.3.3.2 Morphological Characterization
 3.3.3.3 Structural Characterization
3.4 Conclusion
References

Chapter 4
Optical properties of the ternary chalcopyrite thin films Ag-In-Se and Ag-Ga-Se

4.1 Introduction
4.2 Experimental
4.3 Results and Discussion

4.3.1 Optical absorption and transmission analysis of AgInSe$_2$ thin films 78

4.3.2 Optical absorption and transmission analysis of AgGaSe$_2$ and OVC AgGa$_3$Se$_5$ thin films 81

4.3.3 Optical absorption and transmission analysis of OVC AgGa$_7$Se$_{12}$ thin films and Valence band splitting studies 84

4.3.4 Transient photoconductivity analysis 92

4.4 Conclusion 94

References 95

Chapter 5

Electrical properties of the ternary chalcopyrite thin films

Ag-In-Se and Ag-Ga-Se 97

5.1 Introduction 98

5.2 Experimental 99

5.3 Results and Discussion 100

5.3.1 Room temperature and low temperature electrical conductivity studies on AgInSe$_2$ thin films 100

5.3.2 High temperature conductivity studies on AgInSe$_2$ thin films 103

5.3.3 Room temperature and low temperature electrical conductivity studies on AgGaSe$_2$ thin films 105

5.3.4 High temperature conductivity studies on AgGaSe$_2$, OVC AgGa$_3$Se$_5$ and AgGa$_7$Se$_{12}$ thin films 107

5.3.5 Low temperature thermopower analysis 109

5.4 Conclusion 113

References 114
Chapter 6

Tin and Antimony incorporation in AgInSe₂ and AgGaSe₂:
Influence on microstructure, optical and electrical properties

6.1 Introduction 117
6.2 Experimental 118
6.3 Results and Discussion 119
 6.3.1 Compositional Analysis 119
 6.3.2 Morphological Characterization 122
 6.3.3 Structural Characterization 124
 6.3.3.1 X-ray Diffraction Technique (XRD) 124
 6.3.3.2 X-ray Photoelectron Spectroscopy (XPS) 129
 6.3.4 Optical Analysis 133
 6.3.4.1 Optical Absorption Studies 133
 6.3.4.2 Transient Photoconductivity Analysis 136
 6.3.5 Electrical Analysis 136
 6.3.5.1 Low temperature electrical conductivity studies on AgInSe₂:Sn and AgInSe₂:Sb thin films 137
 6.3.5.2 High temperature electrical conductivity studies 143
 6.3.5.3 Low temperature thermopower analysis 146
6.4 Conclusion 150
References 151

Chapter 7

Quaternary thin films of Ag-(In,Ga)-Se: Microstructural, optical and electrical properties and doping effect

7.1 Introduction 154
7.2 Experimental 154
7.3 Results and Discussion 156
 7.3.1 Compositional Analysis 156
 7.3.1.1 Energy Dispersive Analysis of X-rays (EDAX) 156
 7.3.1.2 Rutherford Backscattering Spectrometry (RBS) 159

7.3.2 Morphological Characterization

7.3.3 Structural Characterization
 7.3.3.1 X-ray Diffraction Technique (XRD)
 7.3.3.2 X-ray Photoelectron Spectroscopy (XPS)

7.3.4 Optical Analysis
 7.3.4.1 Room Temperature Optical Transmission and Absorption Studies
 7.3.4.2 Low Temperature Optical Absorption Studies
 7.3.4.3 Transient Photoconductivity Analysis

7.3.5 Electrical Analysis

7.4 Conclusion

References

Summary and Scope for Future Work